Digestive Diseases and Sciences

, Volume 55, Issue 3, pp 716–723 | Cite as

Intestinal Permeability in Irritable Bowel Syndrome Patients: Effects of NSAIDs

  • Angèle P. M. Kerckhoffs
  • Louis M. A. Akkermans
  • Martin B. M. de Smet
  • Marc G. H. Besselink
  • Falco Hietbrink
  • Imke H. Bartelink
  • Wim B. Busschers
  • Melvin Samsom
  • Willem Renooij
Original Article


Intestinal permeability and the effect of NSAIDs on permeability were investigated in 14 irritable bowel syndrome (IBS) patients and 15 healthy subjects. In the study, 24-h urinary recoveries of orally administered polyethylene glycols (PEGs 400, 1500, and 4000) were not significantly different in healthy subjects and IBS patients before or after NSAID ingestion. Lactulose mannitol ratios in healthy subjects and IBS patients were not significantly different. Only time-dependent monitoring of PEG excretion showed that NSAIDs enhanced intestinal permeability for PEG 4000 in healthy subjects (P = 0.050) and for PEGs 400, 1500, and 4000 in IBS patients (P = 0.012, P = 0.041, and P = 0.012, respectively). These results show that intestinal permeability in IBS patients is not different from that in healthy subjects; NSAIDs compromise intestinal permeability in IBS patients to a greater extent than in healthy subjects, which suggests that IBS is associated with an altered response of the intestinal barrier to noxious agents.


NSAIDs Polyethylene glycol PEG Intestinal permeability IBS 



We acknowledge the staff of the Department of Pharmacy of the UMC Utrecht for production and supply of PEG and L/M test solutions. We thank M. van Loon, BSc, R. Voorbij, PhD, and coworkers of the Central Diagnostic Laboratory of the UMC Utrecht for the measurements of lactulose, mannitol, and creatinine. This work was funded in part by a Gastrostart grant from the Netherlands Society of Gastroenterology. APM Kerckhoffs was financially supported by Numico Research BV. LMA Akkermans received financial support from AstraZeneca R&D, Mölndal, Sweden. Supporting institutions were not involved in design, performance, or publication of this study.


  1. 1.
    Mayer EA, Collins SM. Evolving pathophysiologic models of functional gastrointestinal disorders. Gastroenterology. 2002;122(7):2032–2048. doi:10.1053/gast.2002.33584.CrossRefPubMedGoogle Scholar
  2. 2.
    Rodriguez LA, Ruigomez A. Increased risk of irritable bowel syndrome after bacterial gastroenteritis: cohort study. BMJ. 1999;318(7183):565–566.PubMedGoogle Scholar
  3. 3.
    Barbara G, Stanghellini V, De Giorgio R, et al. Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome. Gastroenterology. 2004;126(3):693–702. doi:10.1053/j.gastro.2003.11.055.CrossRefPubMedGoogle Scholar
  4. 4.
    Spiller RC, Jenkins D, Thornley JP, et al. Increased rectal mucosal enteroendocrine cells, T lymphocytes, and increased gut permeability following acute Campylobacter enteritis and in post-dysenteric irritable bowel syndrome. Gut. 2000;47(6):804–811. doi:10.1136/gut.47.6.804.CrossRefPubMedGoogle Scholar
  5. 5.
    Marshall JK, Thabane M, Garg AX, Clark W, Meddings J, Collins SM. Intestinal permeability in patients with irritable bowel syndrome after a waterborne outbreak of acute gastroenteritis in Walkerton, Ontario. Aliment Pharmacol Ther. 2004;20(11–12):1317–1322. doi:10.1111/j.1365-2036.2004.02284.x.CrossRefPubMedGoogle Scholar
  6. 6.
    Parry S, Forgacs I. Intestinal infection and irritable bowel syndrome. Eur J Gastroenterol Hepatol. 2005;17(1):5–9. doi:10.1097/00042737-200501000-00002.CrossRefPubMedGoogle Scholar
  7. 7.
    Minocha A, Johnson WD, Abell TL, Wigington WC. Prevalence, sociodemography, and quality of life of older versus younger patients with irritable bowel syndrome: a population-based study. Dig Dis Sci. 2006;51(3):446–453. doi:10.1007/s10620-006-3153-8.CrossRefPubMedGoogle Scholar
  8. 8.
    Dunlop SP, Hebden J, Campbell E, et al. Abnormal intestinal permeability in subgroups of diarrhea-predominant irritable bowel syndromes. Am J Gastroenterol. 2006;101(6):1288–1294. doi:10.1111/j.1572-0241.2006.00672.x.CrossRefPubMedGoogle Scholar
  9. 9.
    Tibble JA, Sigthorsson G, Foster R, Forgacs I, Bjarnason I. Use of surrogate markers of inflammation and Rome criteria to distinguish organic from nonorganic intestinal disease. Gastroenterology. 2002;123(2):450–460. doi:10.1053/gast.2002.34755.CrossRefPubMedGoogle Scholar
  10. 10.
    Di L V, D’Inca R, Diaz-Granado N, et al. Lactulose/mannitol test has high efficacy for excluding organic causes of chronic diarrhea. Am J Gastroenterol. 2003;98(10):2245–2252.CrossRefGoogle Scholar
  11. 11.
    Lundin P, Lofgren L, Agerforz P, Abrahamsson H, Simren M. Intestinal permeability in IBS patients and healthy subjects. Scand J Gastroenterol. 2006;41:42. doi:10.1080/00365520510023945.CrossRefGoogle Scholar
  12. 12.
    Locke GR III, Zinsmeister AR, Talley NJ, Fett SL, Melton LJ. Risk factors for irritable bowel syndrome: role of analgesics and food sensitivities. Am J Gastroenterol. 2000;95(1):157–165. doi:10.1111/j.1572-0241.2000.01678.x.CrossRefPubMedGoogle Scholar
  13. 13.
    Kalantar JS, Locke GR III, Talley NJ, Zinsmeister AR, Fett SL, Melton LJ III. Is irritable bowel syndrome more likely to be persistent in those with relatives who suffer from gastrointestinal symptoms? A population-based study at three time points. Aliment Pharmacol Ther. 2003;17(11):1389–1397. doi:10.1046/j.1365-2036.2003.01591.x.CrossRefPubMedGoogle Scholar
  14. 14.
    Talley NJ, Spiller R. Irritable bowel syndrome: a little understood organic bowel disease? Lancet. 2002;360(9332):555–564. doi:10.1016/S0140-6736(02)09712-X.CrossRefPubMedGoogle Scholar
  15. 15.
    Holtmann G, Gschossmann J, Buenger L, Gerken G, Talley NJ. Do changes in visceral sensory function determine the development of dyspepsia during treatment with aspirin? Gastroenterology. 2002;123(5):1451–1458. doi:10.1053/gast.2002.36556.CrossRefPubMedGoogle Scholar
  16. 16.
    Brunsden AM, Grundy D. Sensitization of visceral afferents to bradykinin in rat jejunum in vitro. J Physiol. 1999;521(Pt 2):517–527. doi:10.1111/j.1469-7793.1999.00517.x.CrossRefPubMedGoogle Scholar
  17. 17.
    Bjarnason I, Williams P, Smethurst P, Peters TJ, Levi AJ. Effect of non-steroidal anti-inflammatory drugs and prostaglandins on the permeability of the human small intestine. Gut. 1986;27(11):1292–1297. doi:10.1136/gut.27.11.1292.CrossRefPubMedGoogle Scholar
  18. 18.
    Bjarnason I, Hayllar J, MacPherson AJ, Russell AS. Side effects of nonsteroidal anti-inflammatory drugs on the small and large intestine in humans. Gastroenterology. 1993;104(6):1832–1847.PubMedGoogle Scholar
  19. 19.
    Barbara G, De Giorgio R, Stanghellini V, Cremon C, Corinaldesi R. A role for inflammation in irritable bowel syndrome? Gut. 2002;51(Suppl 1):i41–i44. doi:10.1136/gut.51.suppl_1.i41.CrossRefPubMedGoogle Scholar
  20. 20.
    Smecuol E, Bai JC, Sugai E, et al. Acute gastrointestinal permeability responses to different non-steroidal anti-inflammatory drugs. Gut. 2001;49(5):650–655. doi:10.1136/gut.49.5.650.CrossRefPubMedGoogle Scholar
  21. 21.
    Bjarnason I, MacPherson A, Hollander D. Intestinal permeability: an overview. Gastroenterology. 1995;108(5):1566–1581. doi:10.1016/0016-5085(95)90708-4.CrossRefPubMedGoogle Scholar
  22. 22.
    Parlesak A, Bode JC, Bode C. Parallel determination of gut permeability in man with M(r) 400, M(r) 1500, M(r) 4000 and M(r) 10000 polyethylene glycol. Eur J Clin Chem Clin Biochem. 1994;32(11):813–820.PubMedGoogle Scholar
  23. 23.
    Parlesak A, Schafer C, Schutz T, Bode JC, Bode C. Increased intestinal permeability to macromolecules and endotoxemia in patients with chronic alcohol abuse in different stages of alcohol-induced liver disease. J Hepatol. 2000;32(5):742–747. doi:10.1016/S0168-8278(00)80242-1.CrossRefPubMedGoogle Scholar
  24. 24.
    Goldman RC, Leive L. Heterogeneity of antigenic-side-chain length in lipopolysaccharide from Escherichia coli 0111 and Salmonella typhimurium LT2. Eur J Biochem. 1980;107(1):145–153. doi:10.1111/j.1432-1033.1980.tb04635.x.CrossRefPubMedGoogle Scholar
  25. 25.
    Kanda T, Fujii H, Tani T, et al. Intestinal fatty acid-binding protein is a useful diagnostic marker for mesenteric infarction in humans. Gastroenterology. 1996;110(2):339–343. doi:10.1053/gast.1996.v110.pm8566578.CrossRefPubMedGoogle Scholar
  26. 26.
    Kanda T, Fujii H, Fujita M, Sakai Y, Ono T, Hatakeyama K. Intestinal fatty acid binding protein is available for diagnosis of intestinal ischaemia: immunochemical analysis of two patients with ischaemic intestinal diseases. Gut. 1995;36(5):788–791. doi:10.1136/gut.36.5.788.CrossRefPubMedGoogle Scholar
  27. 27.
    Kanda T, Nakatomi Y, Ishikawa H, et al. Intestinal fatty acid-binding protein as a sensitive marker of intestinal ischemia. Dig Dis Sci. 1992;37(9):1362–1367. doi:10.1007/BF01296004.CrossRefPubMedGoogle Scholar
  28. 28.
    Thompson WG, Longstreth GF, Drossman DA, Heaton KW, Irvine EJ, Muller-Lissner SA. Functional bowel disorders and functional abdominal pain. Gut. 1999;45(Suppl 2):II43–II47.PubMedCrossRefGoogle Scholar
  29. 29.
    Uil JJ, van Elburg RM, van Overbeek FM, Mulder CJ, VanBerge-Henegouwen GP, Heymans HS. Clinical implications of the sugar absorption test: intestinal permeability test to assess mucosal barrier function. Scand J Gastroenterol Suppl. 1997;223:70–78.PubMedGoogle Scholar
  30. 30.
    Rissler K. Improved separation of polyethylene glycols widely differing in molecular weight range by reversed-phase high performance liquid chromatography and evaporative light scattering detection. Chromatographia. 1999;49(11–12):615–620. doi:10.1007/BF02466902.CrossRefGoogle Scholar
  31. 31.
    Megoulas NC, Koupparis MA. Twenty years of evaporative light scattering detection. Crit Rev Anal Chem.. 2005;35:301–316. doi:10.1080/10408340500431306.CrossRefGoogle Scholar
  32. 32.
    Duerksen DR, Wilhelm-Boyles C, Parry DM. Intestinal permeability in long-term follow-up of patients with celiac disease on a gluten-free diet. Dig Dis Sci. 2005;50(4):785–790. doi:10.1007/s10620-005-2574-0.CrossRefPubMedGoogle Scholar
  33. 33.
    Pearson AD, Eastham EJ, Laker MF, Craft AW, Nelson R. Intestinal permeability in children with Crohn’s disease and coeliac disease. Br Med J (Clin Res Ed). 1982;285(6334):20–21.CrossRefGoogle Scholar
  34. 34.
    Shah AA, Thjodleifsson B, Murray FE, et al. Selective inhibition of COX-2 in humans is associated with less gastrointestinal injury: a comparison of nimesulide and naproxen. Gut. 2001;48(3):339–346. doi:10.1136/gut.48.3.339.CrossRefPubMedGoogle Scholar
  35. 35.
    Berni Canani R, Terrin G, Rapacciuolo L, et al. Faecal calprotectin as reliable non-invasive marker to assess the severity of mucosal inflammation in children with inflammatory bowel disease. Dig Liver Dis. 2008;40(7):533–547. doi:10.1016/j.dld.2008.01.017.Google Scholar
  36. 36.
    Berkes J, Viswanathan VK, Savkovic SD, Hecht G. Intestinal epithelial responses to enteric pathogens: effects on the tight junction barrier, ion transport, and inflammation. Gut. 2003;52(3):439–451. doi:10.1136/gut.52.3.439.CrossRefPubMedGoogle Scholar
  37. 37.
    Serrander R, Magnusson KE, Kihlstrom E, Sundqvist T. Acute Yersinia infections in man increase intestinal permeability for low-molecular weight polyethylene glycols (PEG 400). Scand J Infect Dis. 1986;18(5):409–413. doi:10.3109/00365548609032356.CrossRefPubMedGoogle Scholar
  38. 38.
    Santos J, Yang PC, Söderholm JD, Benjamin M, Perdue MH. Role of mast cells in chronic stress-induced colonic epithelial barrier dysfunction in the rat. Gut. 2001;48(5):630–636. doi:10.1136/gut.48.5.630.CrossRefPubMedGoogle Scholar
  39. 39.
    Söderholm JD, Yang PC, Ceponis P, et al. Chronic stress induces mast cell-dependent bacterial adherence and initiates mucosal inflammation in rat intestine. Gastroenterology. 2002;123(4):1099–1108. doi:10.1053/gast.2002.36019.CrossRefPubMedGoogle Scholar
  40. 40.
    McDermott JR, Bartram RE, Knight PA, Miller HR, Garrod DR, Grencis RK. Mast cells disrupt epithelial barrier function during enteric nematode infection. Proc Natl Acad Sci USA. 2003;100(13):7761–7766. doi:10.1073/pnas.1231488100.CrossRefPubMedGoogle Scholar
  41. 41.
    O’Sullivan M, Clayton N, Breslin NP, et al. Increased mast cells in the irritable bowel syndrome. Neurogastroenterol Motil. 2000;12(5):449–457. doi:10.1046/j.1365-2982.2000.00221.x.CrossRefPubMedGoogle Scholar
  42. 42.
    Weston AP, Biddle WL, Bhatia PS, Miner P B Jr. Terminal ileal mucosal mast cells in irritable bowel syndrome. Dig Dis Sci. 1993;38(9):1590–1595. doi:10.1007/BF01303164.CrossRefPubMedGoogle Scholar
  43. 43.
    Dunlop SP, Jenkins D, Spiller RC. Distinctive clinical, psychological, and histological features of postinfective irritable bowel syndrome. Am J Gastroenterol. 2003;98(7):1578–1583. doi:10.1111/j.1572-0241.2003.07542.x.CrossRefPubMedGoogle Scholar
  44. 44.
    Jacob C, Yang PC, Darmoul D, et al. Mast cell tryptase controls paracellular permeability of the intestine. Role of protease-activated receptor 2 and beta-arrestins. J Biol Chem. 2005;280(36):31936–31948. doi:10.1074/jbc.M506338200.CrossRefPubMedGoogle Scholar
  45. 45.
    Serrander R, Magnusson KE, Sundqvist T. Acute infections with Giardia lamblia and rotavirus decrease intestinal permeability to low-molecular weight polyethylene glycols (PEG 400). Scand J Infect Dis. 1984;16(4):339–344.CrossRefPubMedGoogle Scholar
  46. 46.
    Krugliak P, Hollander D, Le K, Ma T, Dadufalza VD, Katz KD. Regulation of polyethylene glycol 400 intestinal permeability by endogenous and exogenous prostanoids. Influence of non-steroidal anti-inflammatory drugs. Gut. 1990;31(4):417–421. doi:10.1136/gut.31.4.417.CrossRefPubMedGoogle Scholar
  47. 47.
    Allen A, Hutton DA, Leonard AJ, Pearson JP, Sellers LA. The role of mucus in the protection of the gastroduodenal mucosa. Scand J Gastroenterol Suppl. 1986;125:71–78. doi:10.3109/00365528609093820.CrossRefPubMedGoogle Scholar
  48. 48.
    Somasundaram S, Sigthorsson G, Simpson RJ, et al. Uncoupling of intestinal mitochondrial oxidative phosphorylation and inhibition of cyclooxygenase are required for the development of NSAID-enteropathy in the rat. Aliment Pharmacol Ther. 2000;14(5):639–650. doi:10.1046/j.1365-2036.2000.00723.x.CrossRefPubMedGoogle Scholar
  49. 49.
    Bjarnason I, Takeuchi K, Bjarnason A, Adler SN, Teahon K. The G.U.T. of gut. Scand J Gastroenterol. 2004;39(9):807–815. doi:10.1080/00365520410003326.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Angèle P. M. Kerckhoffs
    • 1
  • Louis M. A. Akkermans
    • 2
  • Martin B. M. de Smet
    • 2
  • Marc G. H. Besselink
    • 2
  • Falco Hietbrink
    • 2
  • Imke H. Bartelink
    • 3
  • Wim B. Busschers
    • 4
  • Melvin Samsom
    • 1
  • Willem Renooij
    • 2
  1. 1.Gastrointestinal Research Unit of Departments of GastroenterologyUniversity Medical Center UtrechtUtrechtThe Netherlands
  2. 2.Gastrointestinal Research Unit of Departments of SurgeryUniversity Medical Center UtrechtUtrechtThe Netherlands
  3. 3.Department of PharmacyUniversity Medical Center UtrechtUtrechtThe Netherlands
  4. 4.Center for BiostatisticsUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations