Digestive Diseases and Sciences

, Volume 55, Issue 2, pp 261–267

The GABAB Receptor Inhibits Activation of Hepatic Stellate Cells

  • Fan Xiao
  • Kangkang Yu
  • Fang Dong
  • Yunlei Liang
  • Cheng Jun
  • Hongshan Wei
Original Article

Abstract

Background/Aims Angiotensin II (Ang II) plays an important role in the activation of hepatic stellate cells (HSCs). In this study it was found that expression of the GABAB receptor was elevated in HSCs treated with Ang II. We attempted to elucidate the mechanism of the GABAB receptor in HSCs activation. Methods First, the target gene (GABAB receptor) was screened by gene chip in HSCs treated with Ang II. Second, the biological function of the GABAB receptor was analyzed by MTT, cell-cycle assay, real-time PCR, and western blot. The methods of MTT and cell-cycle assay were used to evaluate the effect of the GABAB receptor on proliferation and DNA synthesis of HSCs. Expression of ECM, TGF-β1, and α-SMA was analyzed by real-time PCR and western blot. Results The GABAB receptor’s specific agonist CGP35348 inhibited the activation of HSCs, which could be partially reversed by the GABAB receptor’s antagonist. Conclusions Our in-vitro results demonstrated that the GABAB receptor could inhibit HSCs activation.

Keywords

Hepatic stellate cell Liver fibrogenesis GABAB receptor Extracellular matrix TGF-β1 

References

  1. 1.
    Friedman SL. Liver fibrosis—from bench to bedside. J Hepatol. 2003;38(1):S38–S53. doi:10.1016/S0168-8278(02)00429-4.CrossRefPubMedGoogle Scholar
  2. 2.
    Bataller R, Brenner DA. Liver fibrosis. J Clin Invest. 2005;209:18. (Review. Erratum in: J Clin Invest. 2005:115–1100).Google Scholar
  3. 3.
    Friedman SL. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem. 2000;28:2247–2250. doi:10.1074/jbc.275.4.2247.CrossRefGoogle Scholar
  4. 4.
    Wei HS, Li DG, Lu HM, et al. Effects of AT1 receptor antagonist, losartan, on rat hepatic fibrosis induced by CCl4. World J Gastroenterol. 2000;6:540–545.PubMedGoogle Scholar
  5. 5.
    Wei HS, Lu HM, Li DG, et al. The expression of AT1 receptor on hepatic stellate cells in rat fibrosis induced by CCl4. Chin Med J. 2001;114:383–587.Google Scholar
  6. 6.
    Paizis G, Cooper ME, Schembri JM. Up-regulation of components of the renin–angiotensin system in the bile duct-ligated rat liver. Gastroenterology. 2002;123:1667–1676. doi:10.1053/gast.2002.36561.CrossRefPubMedGoogle Scholar
  7. 7.
    Yoshiji H, Noguchi R, Ikenaka Y. Renin–Angiotensin system inhibitors as therapeutic alternatives in the treatment of chronic liver diseases. Curr Med Chem. 2007;14:2749–2754. doi:10.2174/092986707782360169.CrossRefPubMedGoogle Scholar
  8. 8.
    Herath CB, Warner FJ, Lubel JS. Upregulation of hepatic angiotensin-converting enzyme 2 (ACE2) and angiotensin-(1–7) levels in experimental biliary fibrosis. J Hepatol. 2007;47:387–395. doi:10.1016/j.jhep.2007.03.008.CrossRefPubMedGoogle Scholar
  9. 9.
    Yoshiji H, Kuriyama S, Fukui H. Blockade of renin–angiotensin system in antifibrotic therapy. J Gastroenterol Hepatol. 2007;22(1):S93–S95. doi:10.1111/j.1440-1746.2006.04663.x.CrossRefPubMedGoogle Scholar
  10. 10.
    Warner FJ, Lubel JS, McCaughan GW. Liver fibrosis: a balance of ACEs? Clin Sci (Lond). 2007;113:109–118. doi:10.1042/CS20070026.CrossRefGoogle Scholar
  11. 11.
    Bataller R, Gäbele E, Parsons CJ. Systemic infusion of angiotensin II exacerbates liver fibrosis in bile duct-ligated rats. Hepatology. 2005;41:1046–1055. doi:10.1002/hep.20665.CrossRefPubMedGoogle Scholar
  12. 12.
    Bettler B, Kaupmann K, Mosbacher J, et al. Molecular structure and physiological functions of GABA(B) receptors. Physiol Rev. 2004;84:835–867. doi:10.1152/physrev.00036.2003.CrossRefPubMedGoogle Scholar
  13. 13.
    Bataller R, Brenner DA. Liver fibrosis. J Clin Invest. 2005;115:209–218.PubMedGoogle Scholar
  14. 14.
    Pinzani M. PDGF and signal transduction in hepatic stellate cells. Front Biosci. 2002;7:d1720–d1726.CrossRefPubMedGoogle Scholar
  15. 15.
    Wada W, Kuwano H, Hasegawa Y, Kojima I. The dependence of transforming growth factor-beta-induced collagen production on autocrine factor activin A in hepatic stellate cells. Endocrinology. 2004;145:2753–2759. doi:10.1210/en.2003-1663.CrossRefPubMedGoogle Scholar
  16. 16.
    Parramón M, González MP, Herrero MT, Oset-Gasque MJ. GABAB receptors increase intracellular calcium concentrations in chromaffin cells through two different pathways: their role in catecholamine secretion. J Neurosci Res. 1995;41:65–72. doi:10.1002/jnr.490410108.CrossRefPubMedGoogle Scholar
  17. 17.
    Oide H, Tateyama M, Wang XE, et al. Activated stellate (Ito) cells possess voltage-activated calcium current. Biochim Biophys Acta. 1999;1418:158–164. doi:10.1016/S0005-2736(99)00018-8.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Fan Xiao
    • 1
  • Kangkang Yu
    • 2
  • Fang Dong
    • 3
  • Yunlei Liang
    • 3
  • Cheng Jun
    • 1
  • Hongshan Wei
    • 1
  1. 1.The Institute of Infectious DiseasesBeijing Ditan HospitalBeijingChina
  2. 2.Clinical Medical CollegeLanzhou UniversityLanzhouChina
  3. 3.Shanxi Medical UniversityShanxiChina

Personalised recommendations