Chronic Aspirin Use Suppresses CDH1 Methylation in Human Gastric Mucosa

  • Tomomitsu Tahara
  • Tomoyuki Shibata
  • Masakatsu Nakamura
  • Hiromi Yamashita
  • Daisuke Yoshioka
  • Masaaki Okubo
  • Naoko Maruyama
  • Toshiaki Kamano
  • Yoshio Kamiya
  • Hiroshi Fujita
  • Mitsuo Nagasaka
  • Masami Iwata
  • Kazuya Takahama
  • Makoto Watanabe
  • Ichiro Hirata
  • Tomiyasu Arisawa
Original Article

Abstract

There have been reports showing a protective role of aspirin and other nonsteroidal anti-inflammatory drugs (NSAIDs) against gastrointestinal cancers. E-cadherin (CDH1) is an adhesion molecule involved in tumour invasion/metastasis. Silencing of CDH1 by promoter CpG island methylation was shown in gastric cancer, precancerous lesion, and Helicobacter pylori-infected chronic gastritis. We investigated the methylation status of CDH1 in noncancerous gastric mucosa in chronic aspirin user, and assessed its effect on methylation-associated carcinogenesis. Gastric mucosa samples from antrum were obtained from 217 cancer-free subjects, including 37 chronic aspirin users and 180 subjects with no history of chronic or occasional intake of aspirin. Methylation-specific polymerase chain reaction (PCR), i.e., MSP, was performed for CDH1 gene promoter. In all 217 subjects, CDH1 methylation was detected for 69 subjects (31.7%). CDH1 methylation more frequently occurred in H. pylori-infection-positive subjects (P < 0.0001), while chronic aspirin users had a significantly lower risk of CDH1 methylation [nonuser versus user 36.1% versus 10.8%; odds ratio (OR) = 0.21, 95% confidence interval (CI) = 0.07–0.63, P = 0.005]. Logistic regression analysis showed that chronic aspirin use was the independent factor for lower risk of CDH1 methylation (adjusted OR = 0.21, 95%CI = 0.07–0.66, P = 0.008). Chronic aspirin use was associated with lower risk of CDH1 methylation in H. pylori-positive subjects (nonuser versus user 49.5% versus 19.0%; OR = 0.24, 95%CI = 0.08–0.76, P = 0.01). Similar trend was also found in H. pylori-negative subjects (P = 0.07). No association was found between CDH1 methylation status, and duration and dose of aspirin. Our data suggest that chronic aspirin use is associated with reduced risk of CDH1 methylation in human gastric mucosa. Aspirin may have suppressive role against methylation-related gastric carcinogenesis.

Keywords

Aspirin H. pylori DNA methylation Stomach 

References

  1. 1.
    Hawkey CJ. Non-steroidal anti-inflammatory drug gastropathy. Gastroenterology. 2000;119:521–535. doi:10.1053/gast.2000.9561.CrossRefPubMedGoogle Scholar
  2. 2.
    Allison MC, Howatson AG, Torrance CJ, Lee FD, Russel RI. Gastrointestinal damage associated with the use of non-steroidal anti-inflammatory drugs. N Engl J Med. 1992;327:749–754.PubMedGoogle Scholar
  3. 3.
    Wolf MM, Lichtenstein DR, Singh G. Gastrointestinal toxicity of non-steroidal anti-inflammatory drugs. N Engl J Med. 1999;340:1888–1999. doi:10.1056/NEJM199906173402407.CrossRefGoogle Scholar
  4. 4.
    Rich M, Scheiman JM. Nonsteroidal anti-inflammatory drug gastropathy at the millennium: mechanisms and prevention. Semin Arthritis Rheum. 2000;30:167–179. doi:10.1053/sarh.2000.16643.CrossRefPubMedGoogle Scholar
  5. 5.
    Thun MJ, Henley SJ, Patrono C. Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues. J Natl Cancer Inst. 2002;94:252–266.PubMedGoogle Scholar
  6. 6.
    Kune GA, Kune S, Watson LF. Colorectal cancer risk, chronic illnesses, operations, and medications: case control results from the Melbourne Colorectal Cancer Study. Cancer Res. 1988;48:4399–4404.PubMedGoogle Scholar
  7. 7.
    Rosenberg L, Palmer JR, Zauber AG, Warshauer ME, Stolley PD, Shapiro S. A hypothesis: nonsteroidal anti-inflammatory drugs reduce the incidence of large-bowel cancer. J Natl Cancer Inst. 1991;83:355–358. doi:10.1093/jnci/83.5.355.CrossRefPubMedGoogle Scholar
  8. 8.
    Thun MJ, Namboodiri MM, Heath CW Jr. Aspirin use and reduced risk of fatal colon cancer. N Engl J Med. 1991;325:1593–1596.PubMedGoogle Scholar
  9. 9.
    Giovannucci E, Egan KM, Hunter DJ, et al. Aspirin and the risk of colorectal cancer in women. N Engl J Med. 1995;333:609–614. doi:10.1056/NEJM199509073331001.CrossRefPubMedGoogle Scholar
  10. 10.
    Langman MJ, Cheng KK, Gilman EA, Lancashire RJ. Effect of anti-inflammatory drugs on overall risk of common cancer: case control study in general practice research database. BMJ. 2000;320:1642–1646. doi:10.1136/bmj.320.7250.1642.CrossRefPubMedGoogle Scholar
  11. 11.
    Thun MJ, Namboodiri MM, Calle EE, Flanders WD, Heath CW Jr. Aspirin use and risk of fatal cancer. Cancer Res. 1993;15(53):1322–1327.Google Scholar
  12. 12.
    Coogan PF, Rosenberg L, Palmer JR, et al. Nonsteroidal anti-inflammatory drugs and risk of digestive cancers at sites other than the large bowel. Cancer Epidemiol Biomarkers Prev. 2000;1:119–123.Google Scholar
  13. 13.
    Farrow DC, Vaughan TL, Hansten PD, et al. Use of aspirin and other nonsteroidal anti-inflammatory drugs and risk of esophageal and gastric cancer. Cancer Epidemiol Biomarkers Prev. 1998;2:97–102.Google Scholar
  14. 14.
    Funkhouser EM, Sharp GB. Aspirin and reduced risk of esophageal carcinoma. Cancer. 1995;76:1116–1119. doi:10.1002/1097-0142(19951001)76:7<1116::AID-CNCR2820760703>.0.CO;2-I.CrossRefPubMedGoogle Scholar
  15. 15.
    Yang HB, Cheng HC, Sheu BS, Hung KH, Liou MF, Wu JJ. Chronic celecoxib users more often show regression of gastric intestinal metaplasia after Helicobacter pylori eradication. Aliment Pharmacol Ther. 2007;15(25):455–461.Google Scholar
  16. 16.
    Toyota M, Ahuja N, Suzuki H, et al. Aberrant methylation in gastric cancer associated with the CpG island methylator phenotype. Cancer Res. 1999;59:5438–5442.PubMedGoogle Scholar
  17. 17.
    Kang GH, Shim YH, Jung HY, Kim WH, Ro JY, Rhyu MG. CpG island methylation in premalignant stages of gastric carcinoma. Cancer Res. 2001;61:2847–2851.PubMedGoogle Scholar
  18. 18.
    Chan AO, Lam SK, Wong BC, et al. Promoter methylation of E-cadherin gene in gastric mucosa associated with Helicobacter pylori infection and in gastric cancer. Gut. 2003;52:502–506. doi:10.1136/gut.52.4.502.CrossRefPubMedGoogle Scholar
  19. 19.
    Waki T, Tamura G, Sato M, Terashima M, Nishizuka S, Motoyama T. Promoter methylation status of DAP-kinase and RUNX3 genes in neoplastic and non-neoplastic gastric epithelia. Cancer Sci. 2003;94:360–364. doi:10.1111/j.1349-7006.2003.tb01447.x.CrossRefPubMedGoogle Scholar
  20. 20.
    Kang GH, Lee HJ, Hwang KS, Lee S, Kim JH, Kim JS. Aberrant CpG island hypermethylation of chronic gastritis, in relation to aging, gender, intestinal metaplasia, and chronic inflammation. Am J Pathol. 2003;163:1551–1556.PubMedGoogle Scholar
  21. 21.
    Chan AO, Peng JZ, Lam SK, et al. Eradication of Helicobacter pylori infection reverses E-cadherin promoter hypermethylation. Gut. 2006;55:463–468. doi:10.1136/gut.2005.077776.CrossRefPubMedGoogle Scholar
  22. 22.
    Tahara T, Arisawa T, Shibata T, et al. Increased number of methylated CpG islands correlates with Helicobacter pylori infection, histological and serological severity of chronic gastritis. Eur J Gastroenterol Hepatol (in press).Google Scholar
  23. 23.
    Sipponen P, Kekki M, Haapakoski J, Ihamaki T, Siurala M. Gastric cancer risk in chronic gastritis: statistical calculations of cross-sectional data. Int J Cancer. 1985;35:173–177. doi:10.1002/ijc.2910350206.CrossRefPubMedGoogle Scholar
  24. 24.
    Herman JG, Graff JR, Myöhänen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA. 1996;93:9821–9826. doi:10.1073/pnas.93.18.9821.CrossRefPubMedGoogle Scholar
  25. 25.
    Issa JP, Ottaviano YL, Celano P, Hamilton SR, Davidson NE, Baylin SB. Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon. Nat Genet. 1994;7:536–540. doi:10.1038/ng0894-536.CrossRefPubMedGoogle Scholar
  26. 26.
    Ahuja N, Li Q, Mohan AL, Baylin SB, Issa JP. Aging and DNA methylation in colorectal mucosa and cancer. Cancer Res. 1998;8:5489–5494.Google Scholar
  27. 27.
    Issa JP. Aging, DNA methylation and cancer. Crit Rev Oncol Hematol. 1999;32:31–43. doi:10.1016/S1040-8428(99)00019-0.CrossRefPubMedGoogle Scholar
  28. 28.
    Kondo Y, Issa JP. Epigenetic changes in colorectal cancer. Cancer Metastasis Rev. 2004;23:9–39. doi:10.1023/A:1025806911782.CrossRefGoogle Scholar
  29. 29.
    Issa PJ, Ahuja N, Toyota M, Bronner P, Brentnall TA. Accelerated age-related CpG island methylation in ulcerative colitis. Cancer Res. 2001;61:3573–3577.PubMedGoogle Scholar
  30. 30.
    Maekita T, Nakazawa K, Mihara M, et al. High levels of aberrant DNA methylation in Helicobacter pylori-infected gastric mucosae and its possible association with gastric cancer risk. Clin Cancer Res. 2006;12:989–995.CrossRefPubMedGoogle Scholar
  31. 31.
    Tahara T, Arisawa T, Shibata T, et al. Risk prediction of gastric cancer by analysis of aberrant DNA methylation in non-neoplastic gastric epithelium. Digestion. 2007;75:54–61.CrossRefPubMedGoogle Scholar
  32. 32.
    Kaise M, Yamasaki T, Yonezawa J, Miwa J, Ohta Y, Tajiri H. CpG island hypermethylation of tumor-suppressor genes in H. pylori-infected non-neoplastic gastric mucosa is linked with gastric cancer risk. Helicobacter. 2008;13:35–41. doi:10.1111/j.1523-5378.2008.00639.x.CrossRefPubMedGoogle Scholar
  33. 33.
    Nakajima T, Maekita T, Oda I, et al. Higher methylation levels in gastric mucosae significantly correlate with higher risk of gastric cancers. Cancer Epidemiol Biomarkers Prev. 2006;15:2317–2321. doi:10.1158/1055-9965.EPI-06-0436.CrossRefPubMedGoogle Scholar
  34. 34.
    Pereira MA, Tao L, Wang W, et al. Modulation by celecoxib and difluoromethylornithine of the methylation of DNA and the estrogen receptor-alpha gene in rat colon tumors. Carcinogenesis. 2004;25:1917–1923. doi:10.1093/carcin/bgh209.CrossRefPubMedGoogle Scholar
  35. 35.
    Velicescu M, Weisenberger DJ, Gonzales FA, Tsai YC, Nguyen CT, Jones PA. Cell division is required for de novo methylation of CpG islands in bladder cancer cells. Cancer Res. 2002;62:2378–2384.PubMedGoogle Scholar
  36. 36.
    Song JZ, Stirzaker C, Harrison J, Melki JR, Clark SJ. Hypermethylation trigger of the glutathione-S-transferase gene (GSTP1) in prostate cancer cells. Oncogene. 2002;21:1048–1061. doi:10.1038/sj.onc.1205153.CrossRefPubMedGoogle Scholar
  37. 37.
    De Smet C, Loriot A, Boon T. Promoter-dependent mechanism leading to selective hypomethylation within the 5′ region of gene MAGE-A1 in tumor cells. Mol Cell Biol. 2004;24:4781–4790. doi:10.1128/MCB.24.11.4781-4790.2004.CrossRefPubMedGoogle Scholar
  38. 38.
    Ushijima T, Okochi-Takada E. Aberrant methylations in cancer cells: where do they come from? Cancer Sci. 2005;96:206–211. doi:10.1111/j.1349-7006.2005.00035.x.CrossRefPubMedGoogle Scholar
  39. 39.
    Zhu GH, Yang XL, Lai KC, et al. Nonsteroidal antiinflammatory drugs could reverse Helicobacter pylori-induced apoptosis and proliferation in gastric epithelial cells. Dig Dis Sci. 1998;43:1957–1963. doi:10.1023/A:1018830408397.CrossRefPubMedGoogle Scholar
  40. 40.
    Hudson N, Balsitis M, Filipowicz F, Hawkey CJ. Effect of Helicobacter pylori colonisation on gastric mucosal eicosanoid synthesis in patients taking non-steroidal anti-inflammatory drugs. Gut. 1993;34:748–751. doi:10.1136/gut.34.6.748.CrossRefPubMedGoogle Scholar
  41. 41.
    Ristimäki A, Honkanen N, Jänkälä H, Sipponen P, Härkönen M. Expression of cyclooxygenase-2 in human gastric carcinoma. Cancer Res. 1997;57:1276–1280.PubMedGoogle Scholar
  42. 42.
    Uefuji K, Ichikura T, Mochizuki H, Shinomiya N. Expression of cyclooxygenase-2 protein in gastric adenocarcinoma. J Surg Oncol. 1998;69:168–172. doi:10.1002/(SICI)1096-9098(199811)69:3<168::AID-JSO9>3.0.CO;2-0.CrossRefPubMedGoogle Scholar
  43. 43.
    Sung JJ, Leung WK, Go MY, et al. Cyclooxygenase-2 expression in Helicobacter pylori associated premalignant and malignant gastric lesions. Am J Pathol. 2000;157:729–735.PubMedGoogle Scholar
  44. 44.
    Hu PJ, Yu J, Zeng ZR, et al. Chemoprevention of gastric cancer by celecoxib in rats. Gut. 2004;53:195–200. doi:10.1136/gut.2003.021477.CrossRefPubMedGoogle Scholar
  45. 45.
    Karin M, Cao Y, Greten FR, Li ZW. NF-kappa B in cancer: from innocent bystander to major culprit. Nat Rev Cancer. 2002;2:301–310. doi:10.1038/nrc780.CrossRefPubMedGoogle Scholar
  46. 46.
    Lin A, Karin M. NF-kappa B in cancer: a marked target. Semin Cancer Biol. 2003;13:107–114. doi:10.1016/S1044-579X(02)00128-1.CrossRefPubMedGoogle Scholar
  47. 47.
    Yin MJ, Yamamoto Y, Gaynor RB. The anti-inflammatory agents: aspirin and salicylate inhibit the activity of I (kappa) B kinase-beta. Nature. 1998;396:77–80. doi:10.1038/23948.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Tomomitsu Tahara
    • 1
  • Tomoyuki Shibata
    • 1
  • Masakatsu Nakamura
    • 1
  • Hiromi Yamashita
    • 1
  • Daisuke Yoshioka
    • 1
  • Masaaki Okubo
    • 1
  • Naoko Maruyama
    • 1
  • Toshiaki Kamano
    • 1
  • Yoshio Kamiya
    • 1
  • Hiroshi Fujita
    • 1
  • Mitsuo Nagasaka
    • 1
  • Masami Iwata
    • 1
  • Kazuya Takahama
    • 1
  • Makoto Watanabe
    • 1
  • Ichiro Hirata
    • 1
  • Tomiyasu Arisawa
    • 2
  1. 1.Department of GastroenterologyFujita Health University School of MedicineKutsukake-cho, Toyoake, AichiJapan
  2. 2.Department of GastroenterologyKanazawa Medical UniversityUchinadamachi, IshikawaJapan

Personalised recommendations