The Discrepancy Between Genetic Polymorphism of p53 Codon 72 and the Expression of p53 Protein in Helicobacter pylori-Associated Gastric Cancer in Korea

  • Nayoung KimEmail author
  • Sung-Il Cho
  • Hye Seung Lee
  • Ji Hyun Park
  • Jee Hyun Kim
  • Joo Sung Kim
  • Hyun Chae Jung
  • In Sung Song
Original Article


The p53 gene has been referred to as ‘the guardian of the genome’ because it controls apoptosis and cell cycle arrest. The purpose of this study was to evaluate the association of p53 codon 72 genetic polymorphism and the p53 immunohistochemistry with Helicobacter pylori-associated gastroduodenal diseases, including gastric cancer. This study included 1,852 subjects: controls and patients with gastric cancer, dysplasia, benign gastric ulcers, and duodenal ulcers (DU). Biallelic polymorphism was genotyped by restriction fragment length polymorphism. Immunohistochemical analysis for the detection of mutant type p53 expression was performed. The frequency of the Pro/Pro allele of the p53 codon 72 was higher in the patients with H. pylori-positive dysplasia than in controls (OR: 2.3, 95% CI: 1.3–4.3), but it was less frequent among patients with a H. pylori-positive DU (OR: 0.5, 95% CI: 0.3–0.8). However, there was no significant association with gastric cancer, including the location, stage, or histological type of gastric cancer. Expression of a mutant type of p53 protein was detected in 6.3% of dysplastic tissues and 26.5% of cancerous tissues compared 0% in the controls. Positive expression was higher in the intestinal type of cancer (34.9%) than in the diffuse type (15.0%; P = 0.001). These results suggest that genetic polymorphism of p53 codon 72 played a role in the determination of H. pylori-associated gastroduodenal diseases, but p53 immunostaining did not correlate with those of the p53 genetic polymorphism analysis.


p53 Helicobacter pylori Gastric cancer Genetic polymorphism 



This work was supported by a grant from the Korean Health 21 R&D Project, Ministry of Health and Welfare, Republic of Korea (no. A060266).


  1. 1.
    Levine AJ. The p53 tumor suppressor gene and product. Cancer Surv. 1992;12:59–79.PubMedGoogle Scholar
  2. 2.
    Levine AJ. p53, the cellular gatekeeper for growth and division. Cell. 1997;88:323–331. doi: 10.1016/S0092-8674(00)81871-1.CrossRefPubMedGoogle Scholar
  3. 3.
    Shepherd T, Tolbert D, Benedetti J, et al. Alterations in exon 4 of the p53 gene in gastric carcinoma. Gastroenterology. 2000;118:1039–1044. doi: 10.1016/S0016-5085(00)70356-8.CrossRefPubMedGoogle Scholar
  4. 4.
    Wang YC, Lee HS, Chen SK, Chang YY, Chen CY. Prognostic significance of p53 codon 72 polymorphism in lung carcinomas. Eur J Cancer. 1999;35:226–230. doi: 10.1016/S0959-8049(98)00369-4.CrossRefPubMedGoogle Scholar
  5. 5.
    Birgander R, Sjalander A, Zhou Z, Fan C, Beckman L, Beckman G. p53 polymorphisms and haplotypes in nasopharyngeal cancer. Hum Hered. 1996;46:49–54. doi: 10.1159/000154325.CrossRefPubMedGoogle Scholar
  6. 6.
    Kawajiri K, Nakachi K, Imai K, Watanabe J, Hayashi S. Germ line polymorphisms of p53 and CYP1A1 genes involved in human lung cancer. Carcinogenesis. 1993;14:1085–1089. doi: 10.1093/carcin/14.6.1085.CrossRefPubMedGoogle Scholar
  7. 7.
    Jin X, Wu X, Roth JA, et al. Higher lung cancer risk for younger African-Americans with the Pro/Pro p53 genotype. Carcinogenesis. 1995;16:2205–2208. doi: 10.1093/carcin/16.9.2205.CrossRefPubMedGoogle Scholar
  8. 8.
    Papadakis EN, Dokianakis DN, Spandidos DA. p53 codon 72 polymorphism as a risk factor in the development of breast cancer. Mol Cell Biol Res Commun. 2000;3:389–392. doi: 10.1006/mcbr.2000.0241.CrossRefPubMedGoogle Scholar
  9. 9.
    Sjalander A, Birgander R, Hallmans G, et al. p53 polymorphisms and haplotypes in breast cancer. Carcinogenesis. 1996;17:1313–1316. doi: 10.1093/carcin/17.6.1313.CrossRefPubMedGoogle Scholar
  10. 10.
    Zehbe I, Voglino G, Wilander E, Genta F, Tommasino M. Codon 72 polymorphism of p53 and its association with cervical cancer. Lancet. 1999;354:218–219. doi: 10.1016/S0140-6736(99)01914-5.CrossRefPubMedGoogle Scholar
  11. 11.
    Storey A, Thomas M, Kalita A, et al. Role of a p53 polymorphism in the development of human papilloma virus-associated cancer. Nature. 1998;393:229–234. doi: 10.1038/30400.CrossRefPubMedGoogle Scholar
  12. 12.
    Andersson S, Rylander E, Strand A, Sallstrom J, Wilander E. The significance of p53 codon 72 polymorphism for the development of cervical adenocarcinomas. Br J Cancer. 2001;85:1153–1156. doi: 10.1054/bjoc.2001.2085.CrossRefPubMedGoogle Scholar
  13. 13.
    Helland A, Langerod A, Johnsen H, Olsen AO, Skovlund E, Borresen-Dale AL. p53 polymorphism and risk of cervical cancer. Nature. 1998;396:530–531. doi: 10.1038/25034.CrossRefPubMedGoogle Scholar
  14. 14.
    Josefsson AM, Magnusson PK, Ylitalo N, et al. p53 polymorphism and risk of cervical cancer. Nature. 1998;396:531. doi: 10.1038/25037.CrossRefPubMedGoogle Scholar
  15. 15.
    Hildesheim A, Schiffman M, Brinton LA, et al. p53 polymorphism and risk of cervical cancer. Nature. 1998;396:531–532. doi: 10.1038/25040.CrossRefPubMedGoogle Scholar
  16. 16.
    Sonoda Y, Saigo PE, Boyd J. p53 and genetic susceptibility to cervical cancer. J Natl Cancer Inst. 1999;91:557. doi: 10.1093/jnci/91.6.557.CrossRefPubMedGoogle Scholar
  17. 17.
    Lauren P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol Microbiol Scand. 1965;64:31–49.PubMedGoogle Scholar
  18. 18.
    Gonzalez CA, Sala N, Capella G. Genetic susceptibility and gastric cancer risk. Int J Cancer. 2002;100:249–260. doi: 10.1002/ijc.10466.CrossRefPubMedGoogle Scholar
  19. 19.
    Correa P. Human gastric carcinogenesis: a multistep and multifactorial process. Cancer Res. 1992;52:6735–6740.PubMedGoogle Scholar
  20. 20.
    Perez-Perez GI, Bosques-Padilla FJ, Crosatti ML, Tijerina-Menchaca R, Garza-Gonzalez E. Role of p53 codon 72 polymorphism in the risk of development of distal gastric cancer. Scand J Gastroenterol. 2005;40:56–60. doi: 10.1080/00365520410009456.CrossRefPubMedGoogle Scholar
  21. 21.
    Shen H, Solari A, Wang X, et al. p53 codon 72 polymorphism and risk of gastric cancer in a Chinese population. Oncol Rep. 2004;11:1115–1120.PubMedGoogle Scholar
  22. 22.
    Zhang ZW, Newcomb P, Hollowood A, et al. A comparison study of gastric cancer risk in patients with duodenal and gastric ulcer: roles of gastric mucosal histology and p53 codon 72 polymorphism. Dig Dis Sci. 2004;49:254–259. doi: 10.1023/B:DDAS.0000017447.02220.f5.CrossRefPubMedGoogle Scholar
  23. 23.
    Xi YG, Ding KY, Su XL, et al. p53 polymorphism and p21WAF1/CIP1 haplotype in the intestinal gastric cancer and the precancerous lesions. Carcinogenesis. 2004;25:2201–2206. doi: 10.1093/carcin/bgh229.CrossRefPubMedGoogle Scholar
  24. 24.
    Sul J, Yu GP, Lu QY, et al. p53 codon 72 polymorphisms: a case-control study of gastric cancer and potential interactions. Cancer Lett. 2006;238:210–223. doi: 10.1016/j.canlet.2005.07.004.CrossRefPubMedGoogle Scholar
  25. 25.
    Hiyama T, Tanaka S, Kitadai Y, et al. p53 codon 72 polymorphism in gastric cancer susceptibility in patients with Helicobacter pylori-associated chronic gastritis. Int J Cancer. 2002;100:304–308. doi: 10.1002/ijc.10483.CrossRefPubMedGoogle Scholar
  26. 26.
    Hessey SJ, Spencer J, Wyatt JI, et al. Bacterial adhesion and disease activity in Helicobacter associated chronic gastritis. Gut. 1990;31:134–138. doi: 10.1136/gut.31.2.134.CrossRefPubMedGoogle Scholar
  27. 27.
    Cover TL, Blaser MJ. Helicobacter pylori infection, a paradigm for chronic mucosal inflammation: pathogenesis and implications for eradication and prevention. Adv Intern Med. 1996;41:85–117.PubMedGoogle Scholar
  28. 28.
    Dunn BE, Cohen H, Blaser MJ. Helicobacter pylori. Clin Microbiol Rev. 1997;10:720–741.PubMedGoogle Scholar
  29. 29.
    Labigne A, de Reuse H. Determinants of Helicobacter pylori pathogenicity. Infect Agents Dis. 1996;5:191–202.PubMedGoogle Scholar
  30. 30.
    Mobley HL. Helicobacter pylori factors associated with disease development. Gastroenterology. 1997;113(6):S21–S28.PubMedGoogle Scholar
  31. 31.
    Graham DY. Campylobacter pylori and peptic ulcer disease. Gastroenterology. 1989;96(2 pt 2 Suppl):615–625.PubMedGoogle Scholar
  32. 32.
    Lee A, Dixon MF, Danon SJ, et al. Local acid production and Helicobacter pylori: a unifying hypothesis of gastroduodenal disease. Eur J Gastroenterol Hepatol. 1995;7:461–465.PubMedGoogle Scholar
  33. 33.
    McColl KE, el-Omar E, Gillen D. Helicobacter pylori gastritis and gastric physiology. Gastroenterol Clin North Am. 2000;29:687–703. doi: 10.1016/S0889-8553(05)70138-2.CrossRefPubMedGoogle Scholar
  34. 34.
    Hansson LE, Nyren O, Hsing AW, et al. The risk of stomach cancer in patients with gastric or duodenal ulcer disease. N Engl J Med. 1996;335:242–249. doi: 10.1056/NEJM199607253350404.CrossRefPubMedGoogle Scholar
  35. 35.
    Mastumoto Y, Marusawa H, Kinoshita K, et al. Helicobacter pylori infection triggers aberrant expression of activation-induced cytidine deaminase in gastric epithelium. Nat Med. 2007;13:470–476. doi: 10.1038/nm1566.CrossRefGoogle Scholar
  36. 36.
    Gabbert HE, Muller W, Schneiders A, Meier S, Hommel G. The relationship of p53 expression to the prognosis of 418 patients with gastric carcinoma. Cancer. 1995;76:720–726. doi:10.1002/1097-0142(19950901)76:5<720::AID-CNCR2820760503>3.0.CO;2-E.CrossRefPubMedGoogle Scholar
  37. 37.
    Brito MJ, Williams GT, Thompson H, Filippe MI. Expression of p53 in early (T1) gastric carcinoma and precancerous adjacent mucosa. Gut. 1994;35:1697–1700. doi: 10.1136/gut.35.12.1697.CrossRefPubMedGoogle Scholar
  38. 38.
    Skacel M, Petras RE, Rybicki LA, et al. p53 expression in low grade dysplasia in Barrett’s esophagus: correlation with interobserver agreement and disease progression. Am J Gastroenterol. 2002;97:2508–2513. doi: 10.1111/j.1572-0241.2002.06032.x.CrossRefPubMedGoogle Scholar
  39. 39.
    Younes M, Erton A, Lechago LV, Somoano JR, Lechago J. p53 protein accumulation is a specific marker of malignant potential in Barrett’s metaplasia. Dig Dis Sci. 1997;42:697–701. doi: 10.1023/A:1018828207371.CrossRefPubMedGoogle Scholar
  40. 40.
    Weston AP, Banerjee SK, Sharma P, Tran TM, Richards R, Cherian R. p53 protein overexpression in low grade dysplasia (LGD) in Barrett’s esophagus: immunohistological marker predictive of progression. Am J Gastroenterol. 2001;96:1355–1362. doi: 10.1111/j.1572-0241.2001.03851.x.CrossRefPubMedGoogle Scholar
  41. 41.
    Loffeld RJ, Stobberingh E, Flendrig JA, Arends JW. Helicobacter pylori in gastric biopsy specimens. Comparison of culture, modified Giemsa stain, and immunohistochemistry. A retrospective study. J Pathol. 1991;165:69–73. doi: 10.1002/path.1711650111.CrossRefPubMedGoogle Scholar
  42. 42.
    Dixon MF, Genta RM, Yardley JH, Correa P. The participants on the International workshop on the Histopathology of Gastritis, Houston 1994. Classification and grading of gastritis: the Updated Sydney System. Am J Surg Pathol. 1996;20:1161–1181. doi: 10.1097/00000478-199610000-00001.CrossRefPubMedGoogle Scholar
  43. 43.
    Kim SY, Ahn JS, Ha YJ, et al. Serodiagnosis of Helicobacter pylori infection in Korean patients using enzyme-linked immunosorbent assay. J Immunoassay. 1998;19:251–270. doi: 10.1080/01971529808005485.CrossRefPubMedGoogle Scholar
  44. 44.
    Thomas M, Kalita A, Labrecque S, Pim D, Banks L, Matlashewski G. Two polymorphic variants of wild-type p53 differ biochemically and biologically. Mol Cell Biol. 1999;19:1092–1100.PubMedGoogle Scholar
  45. 45.
    Zhou Y, Li Z, Zhuang W, et al. P53 codon 72 polymorphism and gastric cancer: a meta-analysis of the literature. Int J Cancer. 2007;121:1481–1486. doi: 10.1002/ijc.22833.CrossRefPubMedGoogle Scholar
  46. 46.
    Kim JM, Lee OY, Lee CG, et al. p53 codon 72 and 16-bp duplication polymorphisms of gastric cancer in Koreans. Korean J Gastroenterol. 2007;50:292–298.PubMedGoogle Scholar
  47. 47.
    Baker SJ, Markowitz S, Fearon ER. Suppression of human colorectal cell growth by wild-type p53. Science. 1990;249:912–915. doi: 10.1126/science.2144057.CrossRefPubMedGoogle Scholar
  48. 48.
    Hinds PW, Finlay CA, Quartin RS, et al. Mutant p53 DNA clones from human colon carcinomas cooperate with ras in transforming primary rat cells: a comparison of the ‘hot’ spot mutant phenotypes. Cell Growth Differ. 1990;1:571–580.PubMedGoogle Scholar
  49. 49.
    Kuerbitz SJ, Plunkett BS, Walsh WV, Kastan MB. Wild-type p53 is a cell cycle check point determinant following irradiation. Proc Natl Acad Sci USA. 1992;89:7491–7495. doi: 10.1073/pnas.89.16.7491.CrossRefPubMedGoogle Scholar
  50. 50.
    Livingstone LR, White A, Sprouse J, Livanos E, Jacks T, Tlsty TD. Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell. 1992;70:923–935. doi: 10.1016/0092-8674(92)90243-6.CrossRefPubMedGoogle Scholar
  51. 51.
    Martin H, Filipe MI, Morris R, Lane DP, Silvestre F. p53 expression and prognosis in gastric carcinoma. Int J Cancer. 1992;50:1–4. doi: 10.1002/ijc.2910500604.CrossRefGoogle Scholar
  52. 52.
    Joypaul BV, Newman EL, Hopwood D, et al. Expression of p53 protein in normal, dysplastic and malignant gastric mucosa: an immunohistochemical study. J Pathol. 1993;170:279–283.CrossRefPubMedGoogle Scholar
  53. 53.
    Segal F, Kaspary AP, Prolla JC, Leistner S. p53 protein overexpression and p53 mutation analysis in patients with intestinal metaplasia of the cardia and Barrett’s esophagus. Cancer Lett. 2004;210:213–218. doi: 10.1016/j.canlet.2004.01.020.CrossRefPubMedGoogle Scholar
  54. 54.
    Hamelin R, Flejou JF, Muzeau F, et al. Tp53 gene mutations and P53 protein immunoreactivity in malignant and premalignant Barretts-esophagus. Gastroenterology. 1994;107:1012–1018.PubMedGoogle Scholar
  55. 55.
    Coggi G, Bosari S, Roncalli M, et al. p53 protein accumulation and p53 gene mutation in esophageal carcinoma—a molecular and immunochemical study with clinicopathologic correlations. Cancer. 1997;79:425–432. doi:10.1002/(SICI)1097-0142(19970201)79:3<425::AID-CNCR1>3.0.CO;2-H.CrossRefPubMedGoogle Scholar
  56. 56.
    Bian YS, Osterheld MC, Bosman FT, Benhattar J, Fontolliet C. p53 gene mutation and protein accumulation during neoplastic progression in Barrett’s esophagus. Mod Pathol. 2001;14:397–403. doi: 10.1038/modpathol.3880324.CrossRefPubMedGoogle Scholar
  57. 57.
    Moore JH, Lesser EJ, Erdody DH, Matale RB, Orringer MB, Beer DG. Intestinal differentiation and p53 gene alterations in Barrett's-esophagus and esophageal adenocarcinoma. Int J Cancer. 1994;56:487–493. doi: 10.1002/ijc.2910560406.CrossRefPubMedGoogle Scholar
  58. 58.
    Munro AJ, Lain S, Lane DP. P53 abnormalities and outcomes in colorectal cancer: a systemic review. Br J Cancer. 2005;92:434–444.Google Scholar
  59. 59.
    Meek DW. The p53 response to DNA damage. DNA Repair (Amst). 2004;3:1049–1056. doi: 10.1016/j.dnarep2004.03.027.CrossRefGoogle Scholar
  60. 60.
    Murray L, Sedo A, Scott M, et al. TP53 and progression from Barrett’s metaplasia to oesophageal adenocarcinoma in a UK population cohort. Gut. 2006;55:1390–1397. doi: 10.1136/gut.2005.083295.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Nayoung Kim
    • 1
    • 2
    Email author
  • Sung-Il Cho
    • 3
  • Hye Seung Lee
    • 4
  • Ji Hyun Park
    • 2
  • Jee Hyun Kim
    • 1
  • Joo Sung Kim
    • 2
  • Hyun Chae Jung
    • 2
  • In Sung Song
    • 2
  1. 1.Department of Internal MedicineSeoul National University Bundang HospitalSeongnamSouth Korea
  2. 2.Department of Internal Medicine and Liver Research InstituteSeoul National University College of MedicineSeoulSouth Korea
  3. 3.School of Public Health and Institute of Health and EnvironmentSeoul National UniversitySeoulSouth Korea
  4. 4.Department of PathologySeoul National University Bundang HospitalSeongnamSouth Korea

Personalised recommendations