Gastroprotective Action of Cochinchina Momordica Seed Extract Is Mediated by Activation of CGRP and Inhibition of cPLA2/5-LOX Pathway

  • Jung Mook Kang
  • Nayoung KimEmail author
  • Bongcheol Kim
  • Joo-Hyon Kim
  • Bong-Yong Lee
  • Ji Hyun Park
  • Mi Kyoung Lee
  • Hye Seung Lee
  • In-Jin Jang
  • Joo Sung Kim
  • Hyun Chae Jung
  • In Sung Song
Original Article


Cochinchina momordica seed extract (SK-MS10), which is composed of the major compounds momordica saponins, has been evaluated for its gastroprotective effects in rat models of acute gastric mucosal damage. Ethanol and water immersion restraint stress (WRS) induced gastric damage, including hemorrhages and edema, was significantly attenuated by pretreatment with SK-MS10. In addition, SK-MS10 reduced increases of mucosal myeloperoxidase (MPO), IL-1β, and TNFα levels and the expression of cPLA2, and 5-LOX induced by ethanol or WRS. SK-MS10 also increased hexosamine, adherent mucus, and the expression of MUC5AC. Furthermore, SK-MS10 enhanced the mucosal expression of the CGRP gene and its serum levels. N G-methyl L-arginine (L-NMMA) or capsaicin desensitization reversed the SK-MS10-induced gastroprotection effect. These results suggest that SK-MS10 is a gastroprotective agent against acute gastric mucosal damage by suppressing proinflammatory cytokines, down-regulating cPLA2, 5-LOX, and increasing the synthesis of mucus. Furthermore, CGRP-NO pathway was found to play an important role in these gastroprotective effects of SK-MS10.


Cochinchina momordica Calcitonin gene-related peptide Nitric oxide Gastroprotection 



This study was supported by the grant no. 06-2007-134-0 from the Seoul National University Hospital Research Fund.


  1. 1.
    Akiba Y, Guth PH, Engel E, Nastaskin I, Kaunitz JD. Dynamic regulation of mucus gel thickness in rat duodenum. Am J Physiol Gastrointest Liver Physiol. 2000;279:G437–G447.PubMedGoogle Scholar
  2. 2.
    Akiba Y, Furukawa O, Guth PH, Engel E, Nastaskin I, Kaunitz JD. Sensory pathways and cyclooxygenase regulate mucus gel thickness in rat duodenum. Am J Physiol Gastrointest Liver Physiol. 2001;280:G470–G474.PubMedGoogle Scholar
  3. 3.
    Ichikawa T, Ishihara K, Kusakabe T, Hiruma H, Kawakami T, Hotta K. CGRP modulates mucin synthesis in surface mucus cells of rat gastric oxyntic mucosa. Am J Physiol Gastrointest Liver Physiol. 2000;279:G82–G89.PubMedGoogle Scholar
  4. 4.
    Holzer P, Livingston EH, Saria A, Guth PH. Sensory neurons mediate protective vasodilatation in rat gastric mucosa. Am J Physiol. 1991;260:G363–G370.PubMedGoogle Scholar
  5. 5.
    Holzer P. Neural emergency system in the stomach. Gastroenterology. 1998;114:823–839. doi: 10.1016/S0016-5085(98)70597-9.CrossRefPubMedGoogle Scholar
  6. 6.
    Lambrecht N, Burchert M, Respondek M, Muller KM, Peskar BM. Role of calcitonin gene-related peptide and nitric oxide in the gastroprotective effect of capsaicin in the rat. Gastroenterology. 1993;104:1371–1380.PubMedGoogle Scholar
  7. 7.
    Gao XM. Mu Bie Zi (Semen momordicae). Chinese Materia Medicia. Beijing: Traditional Chinese Materia Medica Press; 2005;601–602.Google Scholar
  8. 8.
    Matsuda H, Li Y, Murakami T, Yamahara J, Yoshikawa M. Protective effects of oleanolic acid oligoglycosides on ethanol- or indomethacin-induced gastric mucosal lesions in rats. Life Sci. 1998;63:PL245–PL250. doi: 10.1016/S0024-3205(98)00426-3.CrossRefPubMedGoogle Scholar
  9. 9.
    Harada N, Okajima K, Uchiba M, Katsuragi T. Contribution of capsaicin-sensitive sensory neurons to stress-induced increases in gastric tissue levels of prostaglandins in rats. Am J Physiol Gastrointest Liver Physiol. 2003;285:G1214–G1224.PubMedGoogle Scholar
  10. 10.
    Nam SY, Kim N, Lee CS, et al. Gastric mucosal protection via enhancement of MUC5AC and MUC6 by geranylgeranylacetone. Dig Dis Sci. 2005;50:2110–2120. doi: 10.1007/s10620-005-3016-8.CrossRefPubMedGoogle Scholar
  11. 11.
    Lacy ER, Ito S. Microscopic analysis of ethanol damage to rat gastric mucosa after treatment with a prostaglandin. Gastroenterology. 1982;83:619–625.PubMedGoogle Scholar
  12. 12.
    Kitagawa H, Takeda F, Kohei H. A simple method for estimation of gastric mucus and effects of antiulcerogenic agents on the decrease in mucus during water-immersion stress in rats. Arzneimittelforschung. 1986;36:1240–1244.PubMedGoogle Scholar
  13. 13.
    Nishida K, Ohta Y, Ishiguro I. Teprenone, an anti-ulcer agent, increases gastric mucosal mucus level via nitric oxide in rats. Jpn J Pharmacol. 1998;78:519–522. doi: 10.1254/jjp.78.519.CrossRefPubMedGoogle Scholar
  14. 14.
    Van Klinken BJ, Dekker J, Buller HA, Einerhand AW. Mucin gene structure and expression: protection vs. adhesion. Am J Physiol. 1995;269:G613–G627.PubMedGoogle Scholar
  15. 15.
    Ho SB, Roberton AM, Shekels LL, Lyftogt CT, Niehans GA, Toribara NW. Expression cloning of gastric mucin complementary DNA and localization of mucin gene expression. Gastroenterology. 1995;109:735–747. doi: 10.1016/0016-5085(95)90380-1.CrossRefPubMedGoogle Scholar
  16. 16.
    Ho SB, Shekels LL, Toribara NW, et al. Mucin gene expression in normal, preneoplastic, and neoplastic human gastric epithelium. Cancer Res. 1995;55:2681–2690.PubMedGoogle Scholar
  17. 17.
    Wallace JL, Miller MJ. Nitric oxide in mucosal defense: a little goes a long way. Gastroenterology. 2000;119:512–520. doi: 10.1053/gast.2000.9304.CrossRefPubMedGoogle Scholar
  18. 18.
    Rokutan K, Teshima S, Kawai T, et al. Geranylgeranylacetone stimulates mucin synthesis in cultured guinea pig gastric pit cells by inducing a neuronal nitric oxide synthase. J Gastroenterol. 2000;35:673–681. doi: 10.1007/s005350070046.CrossRefPubMedGoogle Scholar
  19. 19.
    Holzer P. Role of visceral afferent neurons in mucosal inflammation and defense. Curr Opin Pharmacol. 2007;7:563–569. doi: 10.1016/j.coph.2007.09.004.CrossRefPubMedGoogle Scholar
  20. 20.
    Vongthavaravat V, Mesiya S, Saymeh L, Xia Y, Harty RF. Mechanisms of transforming growth factor-alpha (TGF-alpha) induced gastroprotection against ethanol in the rat: roles of sensory neurons, sensory neuropeptides, and prostaglandins. Dig Dis Sci. 2003;48:329–333. doi: 10.1023/A:1021935728607.CrossRefPubMedGoogle Scholar
  21. 21.
    Kato K, Yang H, Tache Y. Role of peripheral capsaicin-sensitive neurons and CGRP in central vagally mediated gastroprotective effect of TRH. Am J Physiol. 1994;266:R1610–R1614.PubMedGoogle Scholar
  22. 22.
    Fukushima K, Aoi Y, Kato S, Takeuchi K. Gastro-protective action of lafutidine mediated by capsaicin-sensitive afferent neurons without interaction with TRPV1 and involvement of endogenous prostaglandins. World J Gastroenterol. 2006;12:3031–3037.PubMedGoogle Scholar
  23. 23.
    Brzozowski T, Konturek PC, Drozdowicz D, et al. Role of central and peripheral ghrelin in the mechanism of gastric mucosal defence. Inflammopharmacol. 2005;13:45–62. doi: 10.1163/156856005774423971.CrossRefGoogle Scholar
  24. 24.
    Brzozowski T, Konturek PC, Drozdowicz D, et al. Grapefruit-seed extract attenuates ethanol-and stress-induced gastric lesions via activation of prostaglandin, nitric oxide and sensory nerve pathways. World J Gastroenterol. 2005;11:6450–6458.PubMedGoogle Scholar
  25. 25.
    Zayachkivska OS, Konturek SJ, Drozdowicz D, Konturek PC, Brzozowski T, Ghegotsky MR. Gastroprotective effects of flavonoids in plant extracts. J Physiol Pharmacol. 2005;56(Suppl 1):219–231.PubMedGoogle Scholar
  26. 26.
    Guidobono F, Pagani F, Sibilia V, Soglian A, Rapetti D, Netti C. The role of sensory neurons in the antiulcer effect of centrally injected amylin in rat. Peptides. 2000;21:1537–1541. doi: 10.1016/S0196-9781(00)00308-9.CrossRefPubMedGoogle Scholar
  27. 27.
    Ren J, Gao J, Ojeas H, et al. Involvement of capsaicin-sensitive sensory neurons in stress-induced gastroduodenal mucosal injury in rats. Dig Dis Sci. 2000;45:830–836. doi: 10.1023/A:1005424617101.CrossRefPubMedGoogle Scholar
  28. 28.
    Brzozowski T, Konturek PC, Pajdo R, et al. Importance of brain-gut axis in the gastroprotection induced by gastric and remote preconditioning. J Physiol Pharmacol. 2004;55:165–177.PubMedGoogle Scholar
  29. 29.
    Lawson DC, Mantyh CR, Pappas TN. Effect of CGRP antagonist, alpha-CGRP 8–37, on acid secretion in the dog. Dig Dis Sci. 1994;39:1405–1408. doi: 10.1007/BF02088041.CrossRefPubMedGoogle Scholar
  30. 30.
    Manela FD, Ren J, Gao J, McGuigan JE, Harty RF. Calcitonin gene-related peptide modulates acid-mediated regulation of somatostatin and gastrin release from rat antrum. Gastroenterology. 1995;109:701–706. doi: 10.1016/0016-5085(95)90376-3.CrossRefPubMedGoogle Scholar
  31. 31.
    Asako H, Kubes P, Wallace J, Gaginella T, Wolf RE, Granger DN. Indomethacin-induced leukocyte adhesion in mesenteric venules: role of lipoxygenase products. Am J Physiol. 1992;262:G903–G908.PubMedGoogle Scholar
  32. 32.
    Gambero A, Marostica M, Becker TL, Pedrazzoli Jr J. Effect of different cyclooxygenase inhibitors on gastric adaptive cytoprotection induced by 20% ethanol. Dig Dis Sci. 2007;52:425–433. doi: 10.1007/s10620-006-9487-4.CrossRefPubMedGoogle Scholar
  33. 33.
    Choi SM, Shin JH, Kang KK, Ahn BO, Yoo M. Gastroprotective effects of DA-6034, a new flavonoid derivative, in various gastric mucosal damage models. Dig Dis Sci. 2007;52:3075–3080. doi: 10.1007/s10620-006-9657-4.CrossRefPubMedGoogle Scholar
  34. 34.
    Fiorucci S, de Lima OM Jr, Mencarelli A, et al. Cyclooxygenase-2-derived lipoxin A4 increases gastric resistance to aspirin-induced damage. Gastroenterology. 2002;123:1598–1606. doi: 10.1053/gast.2002.36558.CrossRefPubMedGoogle Scholar
  35. 35.
    Souza MH, de Lima OM Jr, Zamuner SR, Fiorucci S, Wallace JL. Gastritis increases resistance to aspirin-induced mucosal injury via COX-2-mediated lipoxin synthesis. Am J Physiol Gastrointest Liver Physiol. 2003;285:G54–G61.PubMedGoogle Scholar
  36. 36.
    Claria J, Serhan CN. Aspirin triggers previously undescribed bioactive eicosanoids by human endothelial cell-leukocyte interactions. Proc Natl Acad Sci USA. 1995;92:9475–9479. doi: 10.1073/pnas.92.21.9475.CrossRefPubMedGoogle Scholar
  37. 37.
    Gyires K, Hermecz I, Knoll J. The effect of some anti-ulcer agents on the early vascular injury of gastric mucosa induced by ethanol in rats. Acta Physiol Hung. 1989;73:149–154.PubMedGoogle Scholar
  38. 38.
    Szabo S, Trier JS, Brown A, Schnoor J. Early vascular injury and increased vascular permeability in gastric mucosal injury caused by ethanol in the rat. Gastroenterology. 1985;88:228–236.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jung Mook Kang
    • 1
  • Nayoung Kim
    • 1
    • 2
    Email author
  • Bongcheol Kim
    • 3
  • Joo-Hyon Kim
    • 3
  • Bong-Yong Lee
    • 3
  • Ji Hyun Park
    • 1
  • Mi Kyoung Lee
    • 1
  • Hye Seung Lee
    • 4
  • In-Jin Jang
    • 5
  • Joo Sung Kim
    • 1
  • Hyun Chae Jung
    • 1
  • In Sung Song
    • 1
  1. 1.Department of Internal Medicine and Liver Research InstituteSeoul National University College of MedicineSeoulSouth Korea
  2. 2.Department of Internal MedicineSeoul National University Bundang HospitalSeongnam, Gyeonggi-doSouth Korea
  3. 3.Life Science R&D Center, SK ChemicalsSuwon, Gyeonggi-doSouth Korea
  4. 4.Department of PathologySeoul National University Bundang HospitalSeongnam, Gyeonggi-doSouth Korea
  5. 5.Department of PharmacologySeoul National University College of MedicineSeoulSouth Korea

Personalised recommendations