Digestive Diseases and Sciences

, Volume 54, Issue 10, pp 2118–2127 | Cite as

Pseudomonas aeruginosa: Mannose Sensitive Hemagglutinin Inhibits the Growth of Human Hepatocarcinoma Cells via Mannose-Mediated Apoptosis

  • Zhenyuan Cao
  • Lijun Shi
  • Ying Li
  • Jinghua Wang
  • Dandan Wang
  • Guangyou Wang
  • Bo Sun
  • Lili Mu
  • Mingfei Yang
  • Hulun Li
Original Article


A vaccine derived from the outer membrane proteins of the Gram-negative bacterium Pseudomonas aeruginosa has been shown to have immune modulatory properties. An inactivated mutant strain of P. aeruginosa with mannose sensitive hemagglutinin fimbria (PA-MSHA) has been used for adjuvant therapy for malignant cancer. In this study, the growth of human hepatocellular carcinoma Hep G2 and BEL-7402 cells is inhibited by PA-MSHA, but not by mannose-cleaved PA-MSHA. PA-MSHA-treated cells arrested in the S phase of the cell cycle and underwent apoptosis. We hypothesize that apoptosis induced by treatment of Hep G2 and BEL-7402 cells with PA-MSHA is mediated by the mannose residues of PA-MSHA and is propagated through the extrinsic apoptosis pathway directly through caspase-8. These data provide mechanistic details for the potential application of PA-MSHA-based treatment of hepatocellular carcinoma.


Hepatocarcinoma cells PA-MSHA Apoptosis Cell cycle Mannose 


  1. 1.
    Porwoll JM, Gebel HM, Rodey GE, Markham RB. In vitro response of human T cells to Pseudomonas aeruginosa. Infect Immun. 1983;40:670–674.PubMedGoogle Scholar
  2. 2.
    Lee N, Ahn B, Jung SB, Kim YG, Kim H, Park WJ. Conformation-dependent antibody response to Pseudomonas aeruginosa outer membrane proteins induced by immunization in humans. FEMS Immunol Med Microbiol. 2000;27:79–85. doi:10.1111/j.1574-695X.2000.tb01415.x.PubMedCrossRefGoogle Scholar
  3. 3.
    Mu XY. Success in establishing the MSHA-positive Pseudomonas aeruginosa fimbrial strain. Wei Sheng Wu Xue Bao. 1986;26:176–179.PubMedGoogle Scholar
  4. 4.
    Jia L, Wang C, Kong H, et al. Effect of PA-MSHA vaccine on plasma phospholipids metabolic profiling and the ratio of Th2/Th1 cells within immune organ of mouse IgA nephropathy. J Pharm Biomed Anal. 2007;43:646–654. doi:10.1016/j.jpba.2006.07.040.PubMedCrossRefGoogle Scholar
  5. 5.
    Li Z, Hao D, Zhang H, et al. A clinical study on PA-MSHA vaccine used for adjuvant therapy of lymphoma and lung cancer. Hua Xi Yi Ke Da Xue Xue Bao. 2000;31:334–337.PubMedGoogle Scholar
  6. 6.
    Lau WY, Lai EC, Leung TW, Yu SC. Adjuvant intra-arterial iodine-131-labeled lipiodol for resectable hepatocellular carcinoma: a prospective randomized trial-update on 5-year and 10-year survival. Ann Surg. 2008;247:43–48.PubMedCrossRefGoogle Scholar
  7. 7.
    Tan A, Yeh SH, Liu CJ, Cheung C, Chen PJ. Viral hepatocarcinogenesis: from infection to cancer. Liver Int. 2008;28:175–188.PubMedCrossRefGoogle Scholar
  8. 8.
    Nayak NC. Hepatocellular carcinoma—a model of human cancer: clinico-pathological features, etiology and pathogenesis. Indian J Pathol Microbiol. 2003;46:1–16.PubMedGoogle Scholar
  9. 9.
    McKillop IH, Schrum LW. Alcohol and liver cancer. Alcohol. 2005;35:195–203. doi:10.1016/j.alcohol.2005.04.004.PubMedCrossRefGoogle Scholar
  10. 10.
    Bruix J, Hessheimer AJ, Forner A, Boix L, Vilana R, Llovet JM. New aspects of diagnosis and therapy of hepatocellular carcinoma. Oncogene. 2006;25:3848–3856. doi:10.1038/sj.onc.1209548.PubMedCrossRefGoogle Scholar
  11. 11.
    Roessler S, Budhu A, Wang XW. Future of molecular profiling of human hepatocellular carcinoma. Future Oncol. 2007;3:429–439. doi:10.2217/14796694.3.4.429.PubMedCrossRefGoogle Scholar
  12. 12.
    Sell S. Cellular origin of hepatocellular carcinomas. Semin Cell Dev Biol. 2002;13:419–424. doi:10.1016/S1084952102001295.PubMedCrossRefGoogle Scholar
  13. 13.
    Schulte-Hermann R, Bursch W, Löw-Baselli A, Wagner A, Grasl-Kraupp B. Apoptosis in the liver and its role in hepatocarcinogenesis. Cell Biol Toxicol. 1997;13:339–348. doi:10.1023/A:1007495626864.PubMedCrossRefGoogle Scholar
  14. 14.
    Park YN, Chae KJ, Kim YB, Park C, Theise N. Apoptosis and proliferation in hepatocarcinogenesis related to cirrhosis. Cancer. 2001;92:2733–2738. doi:10.1002/1097-0142(20011201)92:11<2733::AID-CNCR10126>3.0.CO;2-5.PubMedCrossRefGoogle Scholar
  15. 15.
    Snaith SM, Levvy GA. Purification and properties of alpha-d-mannosidase from jack-bean meal. Biochem J. 1968;110:663–670.PubMedGoogle Scholar
  16. 16.
    Nahmias Y, Casali M, Barbe L, Berthiaume F, Yarmush ML. Liver endothelial cells promote LDL-R expression and the uptake of HCV-like particles in primary rat and human hepatocytes. Hepatology. 2006;43:257–265. doi:10.1002/hep.21016.PubMedCrossRefGoogle Scholar
  17. 17.
    Zhang J, Yu J, Gu J, et al. A novel protein-DNA interaction involved with the CpG dinucleotide at −30 upstream is linked to the DNA methylation mediated transcription silencing of the MAGE-A1 gene. Cell Res. 2004;14:283–294. doi:10.1038/sj.cr.7290229.PubMedCrossRefGoogle Scholar
  18. 18.
    Wang J, Zhen L, Klug MG, Wood D, Wu X, Mizrahi J. Involvement of caspase 3- and 8-like proteases in ceramide-induced apoptosis of cardiomyocytes. J Card Fail. 2000;6:243–249. doi:10.1054/jcaf.2000.9502.PubMedCrossRefGoogle Scholar
  19. 19.
    Liedtke C, Groger N, Manns MP, Trautwein C. The human caspase-8 promoter sustains basal activity through SP1 and ETS-like transcription factors and can be up-regulated by a p53-dependent mechanism. J Biol Chem. 2003;278:27593–27604. doi:10.1074/jbc.M304077200.PubMedCrossRefGoogle Scholar
  20. 20.
    Chalfant CE, Rathman K, Pinkerman RL, et al. De novo ceramide regulates the alternative splicing of caspase 9 and Bcl-x in A549 lung adenocarcinoma cells. Dependence on protein phosphatase-1. J Biol Chem. 2002;277:12587–12595. doi:10.1074/jbc.M112010200.PubMedCrossRefGoogle Scholar
  21. 21.
    Caputo R, Tuccillo C, Manzo BA, et al. Helicobacter pylori VacA toxin up-regulates vascular endothelial growth factor expression in MKN 28 gastric cells through an epidermal growth factor receptor-, cyclooxygenase-2-dependent mechanism. Clin Cancer Res. 2003;9:2015–2021.PubMedGoogle Scholar
  22. 22.
    Philchenkov AA. Caspases as regulators of apoptosis and other cell functions. Biochemistry (Mosc). 2003;68:365–376. doi:10.1023/A:1023635510363.CrossRefGoogle Scholar
  23. 23.
    Guicciardi ME, Gores GJ. Apoptosis: a mechanism of acute and chronic liver injury. Gut. 2005;54:1024–1033. doi:10.1136/gut.2004.053850.PubMedCrossRefGoogle Scholar
  24. 24.
    Mathiasen IS, Jäättelä M. Triggering caspase-independent cell death to combat cancer. Trends Mol Med. 2002;8:212–220. doi:10.1016/S1471-4914(02)02328-6.PubMedCrossRefGoogle Scholar
  25. 25.
    Hegardt C, Andersson G, Oredsson SM. Different roles of spermine in glucocorticoid and Fas-induced apoptosis. Exp Cell Res. 2001;266:333–341. doi:10.1006/excr.2001.5230.PubMedCrossRefGoogle Scholar
  26. 26.
    Tretiakova I, Blaesius D, Maxia L, et al. Myrtucommulone from Myrtus communis induces apoptosis in cancer cells via the mitochondrial pathway involving caspase-9. Apoptosis. 2008;13:119–131. doi:10.1007/s10495-007-0150-0.PubMedCrossRefGoogle Scholar
  27. 27.
    Jendrossek V, Grassmé H, Mueller I, Lang F, Gulbins E. Pseudomonas aeruginosa-induced apoptosis involves mitochondria and stress-activated protein kinases. Infect Immun. 2001;69:2675–2683. doi:10.1128/IAI.69.4.2675-2683.2001.PubMedCrossRefGoogle Scholar
  28. 28.
    Jia J, Wang Y, Zhou L, Jin S. Expression of Pseudomonas aeruginosa toxin ExoS effectively induces apoptosis in host cells. Infect Immun. 2006;74:6557–6570. doi:10.1128/IAI.00591-06.PubMedCrossRefGoogle Scholar
  29. 29.
    Jenkins CE, Swiatoniowski A, Power MR, Lin TJ. Pseudomonas aeruginosa-induced human mast cell apoptosis is associated with up-regulation of endogenous Bcl-xS and down-regulation of Bcl-xL. J Immunol. 2006;177:8000–8007.PubMedGoogle Scholar
  30. 30.
    Castañeda F, Kinne RK. Apoptosis induced in HepG2 cells by short exposure to millimolar concentrations of ethanol involves the Fas-receptor pathway. J Cancer Res Clin Oncol. 2001;127:418–424. doi:10.1007/s004320000227.PubMedCrossRefGoogle Scholar
  31. 31.
    Khan TH, Sultana S. Apigenin induces apoptosis in Hep G2 cells: possible role of TNF-alpha and IFN-gamma. Toxicology. 2006;217:206–212. doi:10.1016/j.tox.2005.09.019.PubMedCrossRefGoogle Scholar
  32. 32.
    Hu QY, Li JN, Song DQ, et al. Inhibition of human hepatocellular carcinoma by l-proline-m-bis (2-chloroethyl) amino-l-phenylalanyl-l-norvaline ethyl ester hydrochloride (MF13) in vitro and in vivo. Int J Oncol. 2004;25:1289–1296.PubMedGoogle Scholar
  33. 33.
    Xie SQ, Wu YL, Cheng PF, et al. A novel homospermidine conjugate inhibits growth and induces apoptosis in human hepatoma cells. Acta Pharmacol Sin. 2007;28:1827–1834. doi:10.1111/j.1745-7254.2007.00639.x.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Zhenyuan Cao
    • 1
    • 4
  • Lijun Shi
    • 2
  • Ying Li
    • 3
  • Jinghua Wang
    • 4
  • Dandan Wang
    • 4
  • Guangyou Wang
    • 4
  • Bo Sun
    • 4
  • Lili Mu
    • 4
  • Mingfei Yang
    • 5
  • Hulun Li
    • 4
  1. 1.Department of InterventionThe First Affiliated Clinic College of Harbin Medical UniversityHarbinChina
  2. 2.Department of GastroenterologyThe First Affiliated Clinic College of Harbin Medical UniversityHarbinChina
  3. 3.Department of OncologyThe First Affiliated Clinic College of Harbin Medical UniversityHarbinChina
  4. 4.Department of Neurobiology, Harbin Medical University Provincial Key Lab of NeurobiologyHarbin Medical UniversityHarbinChina
  5. 5.Homejoy Pharmaceuticals Company LimitedShanghaiChina

Personalised recommendations