Global Histone H4 Acetylation and HDAC2 Expression in Colon Adenoma and Carcinoma

  • Hassan Ashktorab
  • Kevin Belgrave
  • Fatemeh Hosseinkhah
  • Hassan Brim
  • Mehdi Nouraie
  • Mikiko Takkikto
  • Steve Hewitt
  • Edward L. Lee
  • R. H. Dashwood
  • Duane Smoot
Original Article


Chromatin remodeling and activation of transcription are important aspects of gene regulation, but these often go awry in disease progression, including during colon cancer development. We investigated the status of global histone acetylation (by measuring H3, H4 acetylation of lysine residues, which also occur over large regions of chromatin including coding regions and non-promoter sequences) and expression of histone deacetylase 2 (HDAC2) in colorectal cancer (CRC) tissue microarrays using immunohistochemical staining. Specifically, HDAC2 and the acetylation of histones H4K12 and H3K18 were evaluated in 134 colonic adenomas, 55 moderate to well differentiated carcinomas, and 4 poorly differentiated carcinomas compared to matched normal tissue. In addition, the correlation between expression of these epigenetic biomarkers and various clinicopathological factors including, age, location, and stage of the disease were analyzed. HDAC2 nuclear expression was detected at high levels in 81.9%, 62.1%, and 53.1% of CRC, adenomas, and normal tissue, respectively (P = 0.002). The corresponding nuclear global expression levels in moderate to well differentiated tumors for H4K12 and H3K18 acetylation were increased while these levels were decreased in poorly differentiated tumors (P = 0.02). HDAC2 expression was correlated significantly with progression of adenoma to carcinoma (P = 0.002), with a discriminative power of 0.74, when comparing cancer and non-cancer cases. These results suggest HDAC2 expression is significantly associated with CRC progression.


Global histone acetylation HDAC2 Colon cancer 



This work was supported in part by grants A102681 and CA122959 from the National Cancer Institute.


  1. 1.
    Howe HL, Wingo PA, Thun MJ, et al. Annual report to the nation on the status of cancer (1973 through 1998), featuring cancers with recent increasing trends. J Natl Cancer Inst. 2001;93:824–842.PubMedCrossRefGoogle Scholar
  2. 2.
    Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2007. CA Cancer J Clin. 2007;57:43–66.PubMedCrossRefGoogle Scholar
  3. 3.
    Troisi RJ, Freedman AN, Devesa SS. Incidence of colorectal carcinoma in the US: an update of trends by gender, race, age, subsite, and stage, 1975–1994. Cancer. 1999;85:1670–1676. PubMedCrossRefGoogle Scholar
  4. 4.
    Ashktorab H, Smoot DT, Carethers JM, et al. High incidence of microsatellite instability in colorectal cancer from African Americans. Clin Cancer Res. 2003;9:1112–1117.PubMedGoogle Scholar
  5. 5.
    Ashktorab H, Smoot DT, Farzanmehr H, et al. Clinicopathological features and microsatellite instability (MSI) in colorectal cancers from African Americans. Int J Cancer. 2005;116:914–919. doi: 10.1002/ijc.21062.PubMedCrossRefGoogle Scholar
  6. 6.
    Carethers JM. Racial and ethnic factors in the genetic pathogenesis of colorectal cancer. J Assoc Acad Minor Phys. 1999;10:59–67.PubMedGoogle Scholar
  7. 7.
    Jass JR. Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathology. 2007;50:113–130. doi: 10.1111/j.1365-2559.2006.02549.x.PubMedCrossRefGoogle Scholar
  8. 8.
    Tzao C, Sun GH, Tung HJ, et al. Reduced acetylated histone H4 is associated with promoter methylation of the fragile histidine triad gene in resected esophageal squamous cell carcinoma. Ann Thorac Surg. 2006;82:396–401. doi: 10.1016/j.athoracsur.2006.03.066..PubMedCrossRefGoogle Scholar
  9. 9.
    Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293:1074–1080. doi: 10.1126/science.1063127.PubMedCrossRefGoogle Scholar
  10. 10.
    Marks PA, Richon VM, Breslow R, et al. Histone deacetylase inhibitors as new cancer drugs. Curr Opin Oncol. 2001;13:477–483. doi: 10.1097/00001622-200111000-00010.PubMedCrossRefGoogle Scholar
  11. 11.
    Bernstein BE, Meissner A, Lander ES. The mammalian epigenome. Cell. 2007;128:669–681. doi: 10.1016/j.cell.2007.01.033.PubMedCrossRefGoogle Scholar
  12. 12.
    Bernstein BE, Schreiber SL. Global approaches to chromatin. Chem Biol. 2002;9:1167–1173. doi: 10.1016/S1074-5521(02)00265-X.PubMedCrossRefGoogle Scholar
  13. 13.
    Cress WD, Seto E. Histone deacetylases, transcriptional control, and cancer. J Cell Physiol. 2000;184:1–16. PubMedCrossRefGoogle Scholar
  14. 14.
    Liu Y, Colosimo AL, Yang XJ, et al. Adenovirus E1B 55-kilodalton oncoprotein inhibits p53 acetylation by PCAF. Mol Cell Biol. 2000;20:5540–5553. doi: 10.1128/MCB.20.15.5540-5553.2000.PubMedCrossRefGoogle Scholar
  15. 15.
    Liu Y, Tseng M, Perdreau SA, et al. Histone H2AX is a mediator of gastrointestinal stromal tumor cell apoptosis following treatment with imatinib mesylate. Cancer Res. 2007;67:2685–2692. doi: 10.1158/0008-5472.CAN-06-3497.PubMedCrossRefGoogle Scholar
  16. 16.
    Hubbert C, Guardiola A, Shao R, et al. HDAC6 is a microtubule-associated deacetylase. Nature. 2002;417:455–458. doi: 10.1038/417455a.PubMedCrossRefGoogle Scholar
  17. 17.
    de Ruijter AJ, van Gennip AH, Caron HN, et al. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J. 2003;370:737–749. doi: 10.1042/BJ20021321.PubMedCrossRefGoogle Scholar
  18. 18.
    Seligson DB, Horvath S, Shi T, et al. Global histone modification patterns predict risk of prostate cancer recurrence. Nature. 2005;435:1262–1266. doi: 10.1038/nature03672.PubMedCrossRefGoogle Scholar
  19. 19.
    Barlesi F, Giaccone G, Gallegos-Ruiz MI, et al. Global histone modifications predict prognosis of resected non small-cell lung cancer. J Clin Oncol. 2007;25:4358–4364. doi: 10.1200/JCO.2007.11.2599.PubMedCrossRefGoogle Scholar
  20. 20.
    Kondo Y, Shen L, Yan PS, et al. Chromatin immunoprecipitation microarrays for identification of genes silenced by histone H3 lysine 9 methylation. Proc Natl Acad Sci USA. 2004;101:7398–7403. doi: 10.1073/pnas.0306641101.PubMedCrossRefGoogle Scholar
  21. 21.
    Dashwood RH, Ho E. Dietary histone deacetylase inhibitors: from cells to mice to man. Semin Cancer Biol. 2007;17:363–369. doi: 10.1016/j.semcancer.2007.04.001.PubMedCrossRefGoogle Scholar
  22. 22.
    Satoh A, Toyota M, Itoh F, et al. DNA methylation and histone deacetylation associated with silencing DAP kinase gene expression in colorectal and gastric cancers. Br J Cancer. 2002;86:1817–1823. doi: 10.1038/sj.bjc.6600319.PubMedCrossRefGoogle Scholar
  23. 23.
    Sobin LH, Fleming ID. TNM Classification of malignant tumors, fifth edition (1997). Union Internationale Contre le Cancer and the American Joint Committee on Cancer. Cancer. 1997;80:1803–1804. Google Scholar
  24. 24.
    Hewitt SM. The application of tissue microarrays in the validation of microarray results. Methods Enzymol. 2006;410:400–415. doi: 10.1016/S0076-6879(06)10020-8.PubMedCrossRefGoogle Scholar
  25. 25.
    Zlobec I, Terracciano L, Jass JR, et al. Value of staining intensity in the interpretation of immunohistochemistry for tumor markers in colorectal cancer. Virchows Arch. 2007;451:763–769. doi: 10.1007/s00428-007-0466-8.PubMedCrossRefGoogle Scholar
  26. 26.
    Esteller M. CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene. 2002;21:5427–5440. doi: 10.1038/sj.onc.1205600.PubMedCrossRefGoogle Scholar
  27. 27.
    Ono S, Oue N, Kuniyasu H, et al. Acetylated histone H4 is reduced in human gastric adenomas and carcinomas. J Exp Clin Cancer Res. 2002;21:377–382.PubMedGoogle Scholar
  28. 28.
    Yasui W, Oue N, Ono S, et al. Histone acetylation and gastrointestinal carcinogenesis. Ann N Y Acad Sci. 2003;983:220–231.PubMedCrossRefGoogle Scholar
  29. 29.
    Mitani Y, Oue N, Hamai Y, et al. Histone H3 acetylation is associated with reduced p21(WAF1/CIP1) expression by gastric carcinoma. J Pathol. 2005;205:65–73. doi: 10.1002/path.1684.PubMedCrossRefGoogle Scholar
  30. 30.
    Fahrner JA, Eguchi S, Herman JG, et al. Dependence of histone modifications and gene expression on DNA hypermethylation in cancer. Cancer Res. 2002;62:7213–7218.PubMedGoogle Scholar
  31. 31.
    Baylin SB, Esteller M, Rountree MR, et al. Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum Mol Genet. 2001;10:687–692. doi: 10.1093/hmg/10.7.687.PubMedCrossRefGoogle Scholar
  32. 32.
    Suzuki H, Ouchida M, Yamamoto H, et al. Decreased expression of the SIN3A gene, a candidate tumor suppressor located at the prevalent allelic loss region 15q23 in non-small cell lung cancer. Lung Cancer. 2008;59:24–31. doi: 10.1016/j.lungcan.2007.08.002.PubMedCrossRefGoogle Scholar
  33. 33.
    Jepsen K, Rosenfeld MG. Biological roles and mechanistic actions of co-repressor complexes. J Cell Sci. 2002;115:689–698.PubMedGoogle Scholar
  34. 34.
    Kim YS, Tsao D, Siddiqui B, et al. Effects of sodium butyrate and dimethylsulfoxide on biochemical properties of human colon cancer cells. Cancer. 1980;45:1185–1192.PubMedCrossRefGoogle Scholar
  35. 35.
    Gu W, Roeder RG. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell. 1997;90:595–606. doi: 10.1016/S0092-8674(00)80521-8.PubMedCrossRefGoogle Scholar
  36. 36.
    Ammanamanchi S, Freeman JW, Brattain MG. Acetylated sp3 is a transcriptional activator. J Biol Chem. 2003;278:35775–35780. doi: 10.1074/jbc.M305961200.PubMedCrossRefGoogle Scholar
  37. 37.
    Zhang X, Wharton W, Yuan Z, et al. Activation of the growth-differentiation actor 11 gene by the histone deacetylase (HDAC) inhibitor trichostatin A and repression by HDAC3. Mol Cell Biol. 2004;24:5106–5118. doi: 10.1128/MCB.24.12.5106-5118.2004.PubMedCrossRefGoogle Scholar
  38. 38.
    Xiong Y, Dowdy SC, Podratz KC, et al. Histone deacetylase inhibitors decrease DNA methyltransferase-3B messenger RNA stability and down-regulate de novo DNA methyltransferase activity in human endometrial cells. Cancer Res. 2005;65:2684–2689. doi: 10.1158/0008-5472.CAN-04-2843.PubMedCrossRefGoogle Scholar
  39. 39.
    Wood LD, Parsons DW, Jones S, et al. The genomic landscapes of human breast and colorectal cancers. Science. 2007;318(5853):1079–1080.CrossRefGoogle Scholar
  40. 40.
    Sjoblom T, Jones S, Wood LD, et al. The consensus coding sequences of human breast and colorectal cancers. Science. 2006;314:268–274. doi: 10.1126/science.1133427.PubMedCrossRefGoogle Scholar
  41. 41.
    Fraga MF, Ballestar E, Villar-Garea A, et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet. 2005;37:391–400. doi: 10.1038/ng1531.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Hassan Ashktorab
    • 1
    • 2
  • Kevin Belgrave
    • 1
    • 2
  • Fatemeh Hosseinkhah
    • 1
    • 2
  • Hassan Brim
    • 1
    • 3
  • Mehdi Nouraie
    • 1
    • 2
  • Mikiko Takkikto
    • 4
  • Steve Hewitt
    • 4
  • Edward L. Lee
    • 1
    • 3
  • R. H. Dashwood
    • 5
  • Duane Smoot
    • 1
    • 2
  1. 1.Department of Medicine and Cancer CenterHoward University College of MedicineWashingtonUSA
  2. 2.Howard University College of MedicineWashingtonUSA
  3. 3.Department of PathologyHoward University College of MedicineWashingtonUSA
  4. 4.Tissue Array Research Program, Laboratory of Pathology, Center for Cancer ResearchNational Cancer InstituteBethesdaUSA
  5. 5.The Linus Pauling InstituteOregon State UniversityCorvallisORUSA

Personalised recommendations