Digestive Diseases and Sciences

, Volume 54, Issue 9, pp 1847–1856 | Cite as

Adipose Tissue: The New Endocrine Organ? A Review Article

  • Susan E. Wozniak
  • Laura L. Gee
  • Mitchell S. Wachtel
  • Eldo E. FrezzaEmail author


Fat is either white or brown, the latter being found principally in neonates. White fat, which comprises adipocytes, pre-adipocytes, macrophages, endothelial cells, fibroblasts, and leukocytes, actively participates in hormonal and inflammatory systems. Adipokines include hormones such as leptin, adiponectin, visfatin, apelin, vaspin, hepcidine, chemerin, omentin, and inflammatory cytokines, including tumor necrosis factor alpha (TNF), monocyte chemoattractant protein-1 (MCP-1), and plasminogen activator protein (PAI). Multiple roles in metabolic and inflammatory responses have been assigned to adipokines; this review describes the molecular actions and clinical significance of the more important adipokines. The array of adipokines evidences diverse roles for adipose tissue, which looms large in the mediators of inflammation and metabolism. For this reason, treating obesity is more than a reduction of excess fat; it is also the treatment of obesity’s comorbidities, many of which will some day be treated by drugs that counteract derangements induced by adipokine excesses.


Adipose tissue Resistin Adipokines Cytokines Chemokines 


  1. 1.
    Von Gierke E. Ueber Fett Metabolism. Der Deutsch Ges Path. 1906;10:182–185.Google Scholar
  2. 2.
    Juge-Aubry CE, Henrichot E, Meier CA. Adipose tissue a regulator of inflammation. Best Pract Res Clin Endocrinol Metab. 2005;19(4):547–566. doi: 10.1016/j.beem.2005.07.009.PubMedCrossRefGoogle Scholar
  3. 3.
    Fantuzzi G, Faggioni R. Leptin in the regulation of immunity, inflammation, and hematopoiesis. J Leukoc Biol. 2000;68:437–446.PubMedGoogle Scholar
  4. 4.
    Lord GM, Matarese G, Howard JK, Baker RJ, Bloom SR, Lechler RI. Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature. 1998;394:897–901. doi: 10.1038/29795.PubMedCrossRefGoogle Scholar
  5. 5.
    Ge H, Huang L, Pourbahrami T, Li C. Generation of soluble leptin receptor by ectodomain shedding of membrane-spanning receptors in vitro and in vivo. J Biol Chem. 2002;277:45898–45903. doi: 10.1074/jbc.M205825200.PubMedCrossRefGoogle Scholar
  6. 6.
    Gualillo O, Eira S, Lago F, Diéguez C, Casanueva FF. Elevated serum leptin concentrations induced by experimental acute inflammation. Life Sci. 2000;67:2433–2441. doi: 10.1016/S0024-3205(00)00827-4.PubMedCrossRefGoogle Scholar
  7. 7.
    Blum WF, Englaro P, Hatsch S, et al. Plasma leptin levels in healthy children and adolescents: dependence on BMI, body fat mass, gender, pubertal stage, and testosterone. Clin Endocrinol Metab. 1997;82:2904–2910. doi: 10.1210/jc.82.9.2904.CrossRefGoogle Scholar
  8. 8.
    Castracane VD, Kraemer RR, Franken MA, Kraemer GR, Gimpel T. Serum leptin concentration in women: effect of age, obesity, and estrogen administration. Fertil Steril. 1998;70:472–477. doi: 10.1016/S0015-0282(98)00187-3.PubMedCrossRefGoogle Scholar
  9. 9.
    Ashwin PJ, Dilipbhai PJ. Leptin and the cardiovascular system: a review. Recent Pat Cardiovasc Drug Discov. 2007;2:100–109.PubMedCrossRefGoogle Scholar
  10. 10.
    Irving AJ, Wallace L, Durakoglugil D, Harvey J. Leptin enhances NR2B-mediated N-methyl-D-aspartate responses via a mitogen-activated protein kinase-dependent process in cerebellar granule cells. Neuroscience. 2006;138(4):1137–1148. doi: 10.1016/j.neuroscience.2005.11.042.PubMedCrossRefGoogle Scholar
  11. 11.
    Inui A. Feeding and body-weight regulation by hypothalamic neuropeptides-mediation of the actions of leptin. Trends Neurosci. 1999;22:62–67. doi: 10.1016/S0166-2236(98)01292-2.PubMedCrossRefGoogle Scholar
  12. 12.
    Huo L, Müzberg H, Nillni EA, Bjorbaek C. Role of signal transducer and activator of transcription 3 in regulation of hypothalamic trh gene expression by leptin. Endocrinology. 2004;145:2516–2523. doi: 10.1210/en.2003-1242.PubMedCrossRefGoogle Scholar
  13. 13.
    Elmquist JK, Ahima RS, Maratos-Flier E, Flier JS, Saper CB. Leptin activates neurons in ventrobasal hypothalamus and brainstem. Endocrinology. 1997;138:839–842. doi: 10.1210/en.138.2.839.PubMedCrossRefGoogle Scholar
  14. 14.
    Green B. Lamotrigine in mood disorders. Curr Med Res Opin. 2003;19:272–277. doi: 10.1185/030079903125001703.PubMedCrossRefGoogle Scholar
  15. 15.
    Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature. 1998;395:763–770. doi: 10.1038/27376.PubMedCrossRefGoogle Scholar
  16. 16.
    Farooqi IS, Matarese G, Lord GM, et al. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Invest. 2002;110:1093–1103.PubMedGoogle Scholar
  17. 17.
    Strobel A, Issad T, Camoin L, Ozata M, Strosberg AD. A leptin missense mutation associated with hypogonadism and morbid obesity. Nat Genet. 1998;18:213–215. doi: 10.1038/ng0398-213.PubMedCrossRefGoogle Scholar
  18. 18.
    Flier JS. Obesity wars: molecular progress confronts an expanding epidemic. Cell. 2004;116:337–350. doi: 10.1016/S0092-8674(03)01081-X.PubMedCrossRefGoogle Scholar
  19. 19.
    Gesta S, Tseng YH, Kahn CR. Developmental origin of fat: tracking obesity to its source. Cell. 2007;131(2):242–256. 19.PubMedCrossRefGoogle Scholar
  20. 20.
    Patel SD, Rajala MW, Rossetti L, Scherer PE, Shapiro L. Disulfide-dependent multimeric assembly of resistin family hormones. Science. 2004;304:1154–1158. doi: 10.1126/science.1093466.PubMedCrossRefGoogle Scholar
  21. 21.
    Kusminski CM, McTernan PG, Kumar S. Role of resistin in obesity, insulin resistance and type II diabetes. Clin Sci. 2005;109:243–256. doi: 10.1042/CS20050078.PubMedCrossRefGoogle Scholar
  22. 22.
    Kaser S, Kaser A, Sandhofer A, Ebenbichler CF, Tilg H, Patsch JR. Resistin messenger-RNA expression is increased by proinflammatory cytokines in vitro. Biochem Biophys Res Commun. 2003;309:286–290. doi: 10.1016/j.bbrc.2003.07.003.PubMedCrossRefGoogle Scholar
  23. 23.
    Silswal N, Singh AK, Aruna B, Mukhopadhyay S, Ghosh S, Ehtesham NZ. Human resistin stimulates the pro-inflammatory cytokines TNF-alpha and IL-12 in macrophages by NF-kappaB-dependent pathway. Biochem Biophys Res Commun. 2005;334:1092–1101. doi: 10.1016/j.bbrc.2005.06.202.PubMedCrossRefGoogle Scholar
  24. 24.
    Bokarewa M, Nagaev I, Dahlberg L, Smith U, Tarkowski A. Resistin, an adipokine with potent proinflammatory properties. J Immunol. 2005;174:5789–5795.PubMedGoogle Scholar
  25. 25.
    Verma S, Li SH, Wang CH, et al. Resistin promotes endothelial cell activation: further evidence of adipokine-endothelial interaction. Circulation. 2003;108:736–740. doi: 10.1161/01.CIR.0000084503.91330.49.PubMedCrossRefGoogle Scholar
  26. 26.
    Savage DB, Sewter CP, Klenk ES, et al. Resistin/Fizz3 expression in relation to obesity and peroxisome proliferator-activated receptor-gamma action in humans. Diabetes. 2001;50:2199–2202. doi: 10.2337/diabetes.50.10.2199.PubMedCrossRefGoogle Scholar
  27. 27.
    Utzschneider KM, Carr DB, Tong J, et al. Resistin is not associated with insulin sensitivity or the metabolic syndrome in humans. Diabetologia. 2005;48:2330–2333. doi: 10.1007/s00125-005-1932-y.PubMedCrossRefGoogle Scholar
  28. 28.
    Jung HS, Park KH, Cho YM, et al. Resistin is secreted from macrophages in atheromas and promotes atherosclerosis. Cardiovasc Res. 2006;69:76–85. doi: 10.1016/j.cardiores.2005.09.015.PubMedCrossRefGoogle Scholar
  29. 29.
    Axelsson J, Bergsten A, Qureshi AR, et al. Elevated resistin levels in chronic kidney disease are associated with decreased glomerular filtration rate and inflammation, but not with insulin resistance. Kidney Int. 2006;69:596–604. doi: 10.1038/ Scholar
  30. 30.
    Saito K, Tobe T, Minoshima S, et al. Organization of the gene for gelatin-binding protein. Gene. 1999;229:67–73. doi: 10.1016/S0378-1119(99)00041-4.PubMedCrossRefGoogle Scholar
  31. 31.
    Mao X, Kikani CK, Riojas RA, et al. APPL1 binds to adiponectin receptors and mediates adiponectin receptors and mediates adiponectin signalling and function. Nat Cell Biol. 2006;8:516–523. doi: 10.1038/ncb1404.PubMedCrossRefGoogle Scholar
  32. 32.
    Bjursell M, Ahnmark A, Bohlooly YM, et al. Opposing effects of adiponectin receptors 1 and 2 on energy metabolism. Diabetes. 2007;65:583–593. doi: 10.2337/db06-1432.CrossRefGoogle Scholar
  33. 33.
    Hug C, Wang J, Ahmad NS, Bogan JS, Tsao TS, Lodish HF. T-cadherin is a receptor for hexameric and high-molecular-weight forms of Acrp30/adiponectin. Proc Natl Acad Sci USA. 2004;101:10308–10313. doi: 10.1073/pnas.0403382101.PubMedCrossRefGoogle Scholar
  34. 34.
    Menzaghi C, Trischitta V, Doria A. Genetic influences of adiponectin on insulin resistance, Type II diabetes and cardiovascular disease. Diabetes. 2007;56:1198–1209. doi: 10.2337/db06-0506.PubMedCrossRefGoogle Scholar
  35. 35.
    Xu A, Tso AW, Cheung BM, et al. Circulating adipocyte-fatty acid binding proteinr levels predicts the development of the metabolic syndrome: a 5-year prospective study. Circulation. 2007;115:1537–1543. doi: 10.1161/CIRCULATIONAHA.106.647503.PubMedCrossRefGoogle Scholar
  36. 36.
    Arita Y, Kihara S, Ouchi N, et al. Paradoxical decrease of an adipose-specific proteirn, adiponectin, in obesity. Biochem Biophys Res Commun. 1999;257:167–175. doi: 10.1006/bbrc.1999.0255.CrossRefGoogle Scholar
  37. 37.
    Ouedraogo R, Wu X, Xu SQ, et al. Adiponectin suppression of high-glucose-induced reactive oxygen species in vascular endothelial cells: evidence for involvement of a cAMP signaling pathway. Diabetes. 2006;55(6):1840–1846. doi: 10.2337/db05-1174.PubMedCrossRefGoogle Scholar
  38. 38.
    Matsuo Y, Imanishi T, Kuroi A, et al. Effects of plasma adiponectin levels on the number and function of endothelial progenitor cells in patients with coronary artery disease. Circ J. 2007;71:1376–1382. doi: 10.1253/circj.71.1376.PubMedCrossRefGoogle Scholar
  39. 39.
    Ouchi N, Kobayashi H, Kihara S, et al. Adiponectin stimulates angiogenesis by promothing cross-talk between AMP-activated protein kinase and Akt signaling in endothelial cells. J Biol Chem. 2003;279:1304–1309. doi: 10.1074/jbc.M310389200.PubMedCrossRefGoogle Scholar
  40. 40.
    Kato H, Kashiwagi H, Shiraga M, et al. Adiponectin acts as an endogenous antithrombotic factor. Arterioscler Thromb Vasc Biol. 2006;26:224–230. doi: 10.1161/01.ATV.0000194076.84568.81.PubMedCrossRefGoogle Scholar
  41. 41.
    Wang Y, Lam KS, Xu JY, et al. Adiponectin inhibits cell proliferation by interacting with several growth factors in an oligomerization-dependent manner. J Biol Chem. 2005;280:18341–18347. doi: 10.1074/jbc.M501149200.PubMedCrossRefGoogle Scholar
  42. 42.
    Trujillo ME, Scherer PE. Adiponectin: journey from an adipocyte secretory protein to biomarker of the metabolic syndrome. J Intern Med. 2005;257:167–175. doi: 10.1111/j.1365-2796.2004.01426.x.PubMedCrossRefGoogle Scholar
  43. 43.
    Xu A, Chan KW, Hoo RL, et al. Testosterone selectively reduces the high molecular weight form of adiponectin by inhibiting its secretion from adipocytes. J Biol Chem. 2005;280:18073–18080. doi: 10.1074/jbc.M414231200.PubMedCrossRefGoogle Scholar
  44. 44.
    Maturese G, Mantxoros C, La Cava A. Leptin and adipocytokines: bridging the gap between immunity and atherosclerosis. Curr Pharm Des. 2007;13:3676–3680. doi: 10.2174/138161207783018635.CrossRefGoogle Scholar
  45. 45.
    Kiris I, Tekin I, Yesildag A, et al. Inverse relationship between adiponectin levels and subclinical carotid athersclerosis in patients undergoing coronary artery bypass grafting. Int Heart J. 2006;47:855–866. doi: 10.1536/ihj.47.855.PubMedCrossRefGoogle Scholar
  46. 46.
    Szmitko PE, Teoh H, Stewart DJ, Verma S. Adiponectin and cardiovascular disease: state of the art? Am J Physiol Heart Circ Physiol. 2007;292:H1655–H1663. doi: 10.1152/ajpheart.01072.2006.PubMedCrossRefGoogle Scholar
  47. 47.
    Lee DK, George SR, O’Dowd B. Unraveling the roles of the apelin system: prospective therapeutic applications in heart failure and obesity. Trends Pharmacol Sci. 2006;27:190–194. doi: 10.1016/ Scholar
  48. 48.
    Iwanaga Y, Kihara Y, Takenaka H, Kita T. Down-regulation of cardiac apelin system in hypertrophied and failing hearts: possible role of angiotensin II-angiotensin type 1 receptor system. J Mol Cell Cardiol. 2006;41:798–806. doi: 10.1016/j.yjmcc.2006.07.004.PubMedCrossRefGoogle Scholar
  49. 49.
    Atluri P, Morine KJ, Liao GP, et al. Ischemic heart failure enhances endogenous myocardial apelin and APJ receptor expression. Cell Mol Biol Lett. 2007;12:127–138. doi: 10.2478/s11658-006-0058-7.PubMedCrossRefGoogle Scholar
  50. 50.
    Ronkainen VP, Ronkainen JJ, Hánninen SL, et al. Hypoxia inducible factor regulates the cardiac expression and secretion of apelin. FASEB J. 2007;21:1821–1830. doi: 10.1096/fj.06-7294com.PubMedCrossRefGoogle Scholar
  51. 51.
    Chong KS, Gardner RS, Morton JJ, Ashley EA, McDonagh TA. Plasma concentrations of the novel peptide apelin are decreased in patients with chronic heart failure. Eur J Heart Fail. 2006;8:355–360. doi: 10.1016/j.ejheart.2005.10.007.PubMedCrossRefGoogle Scholar
  52. 52.
    Grisk O. Apelin and vascular dysfunction in Type II diabetes. Cardiovasc Res. 2007;74:339–340. doi: 10.1016/j.cardiores.2007.03.026.PubMedCrossRefGoogle Scholar
  53. 53.
    Higuchi K, Masaki T, Goth K, et al. Apelin, an APJ receptor ligand, regulates body adiposity and favors the messenger ribonucleic acid expression of uncoupling proteins in mice. Endocrinology. 2007;148:2690–2697. doi: 10.1210/en.2006-1270.PubMedCrossRefGoogle Scholar
  54. 54.
    Fukuhara A, Matsuda M, Nishizawa M, et al. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science. 2005;307:426–430. doi: 10.1126/science.1097243.PubMedCrossRefGoogle Scholar
  55. 55.
    Jia S, Li Y, Parodo J, et al. Pre-B cell colony-enhancing factor inhibits neutrophil apoptosis in experimental inflammation and clinical sepsis. J Clin Invest. 2004;113:1318–1327.PubMedGoogle Scholar
  56. 56.
    Ye SQ, Simon BA, Maloney JP, et al. Pre-B-cell colony-enhancing factor as a potential novel biomarker in acute lung injury. Am J Respir Crit Care Med. 2005;171:361–370. doi: 10.1164/rccm.200404-563OC.PubMedCrossRefGoogle Scholar
  57. 57.
    Park CH, Valore EV, Waring AJ, Ganz T. Hepcidin a urinary antimicrobial peptide synthesized in the liver. J Biol Chem. 2001;276:7806–7810. doi: 10.1074/jbc.M008922200.PubMedCrossRefGoogle Scholar
  58. 58.
    Bekri S, Gual P, Anty R, et al. Increased adipose tissue expression of hepcidin in severe obesity is independent from diabetes and NASH. Gastroenterology. 2006;131(3):788–796. doi: 10.1053/j.gastro.2006.07.007.PubMedCrossRefGoogle Scholar
  59. 59.
    De Souza CM, Yang RZ, Lee MJ, et al. Omentin plasma levels and gene expression are decreased in obesity. Diabetes. 2007;56:1655–1661. doi: 10.2337/db06-1506.CrossRefGoogle Scholar
  60. 60.
    Bozaoglu K, Bolton K, McMillan J, et al. Chemerin is a novel adipokine associated with obesity and metabolic syndrome. Endocrinology. 2007;148:4687–4694. doi: 10.1210/en.2007-0175.PubMedCrossRefGoogle Scholar
  61. 61.
    Hida K, Wada J, Eguchi J, et al. Visceral adipose tissue-derived serine protease inhibitor: a unique insulin-sensitizing adipocytokine in obesity. Proc Natl Acad Sci USA. 2005;102:10610–10615. doi: 10.1073/pnas.0504703102.PubMedCrossRefGoogle Scholar
  62. 62.
    Youn BS, Klöting N, Kratzsch J, Lee N, Park JW. Serum vaspin concentrations in human obesity and type 2 diabetes. Diabetes. 2008;57(2):372–377. doi: 10.2337/db07-1045.PubMedCrossRefGoogle Scholar
  63. 63.
    White RT, Damm D, Hancock N, et al. Human adipsin is identical to complement factor D and is expressed at high levels in adipose tissue. J Biol Chem. 1992;267:9210–9213.PubMedGoogle Scholar
  64. 64.
    Gabrielsson BG, Johansson JM, Lonn M, et al. High expression of complement components in omental adipose tissue in obese men. Obes Res. 2003;11:699–708. doi: 10.1038/oby.2003.100.PubMedCrossRefGoogle Scholar
  65. 65.
    Yang Q, Graham TE, Mody N, et al. Serum retinol binding protein 4 contributes to insulin resistance in obesity and Type II diabetes. Nature. 2005;436:356–362.PubMedCrossRefGoogle Scholar
  66. 66.
    Mandard S, Zandbergen F, van Straten E, et al. The fasting-induced adipose factor/angiopoietin-like protein 4 is physically associated with lipoproteins and governs plasm lipid levels and adiposity. J Biol Chem. 2006;281:934–944. doi: 10.1074/jbc.M506519200.PubMedCrossRefGoogle Scholar
  67. 67.
    Mandard S, Zandbergen F, Tan NS, et al. The direct peroxisome proliferator-activated receptor target fasting-induced adipose factor (FIAF/PGAR/ANGPTL4) is present in blood plasma as a truncated protein that is increased by fenofibrate treatment. J Biol Chem. 2004;279:34411–34420. doi: 10.1074/jbc.M403058200.PubMedCrossRefGoogle Scholar
  68. 68.
    Wang Y, Lam KS, Lam JB, et al. Overexpression of Angiopoietin-like protein 4 alters mitochondria activities and modulates methionine metabolic cycle in the liver tissues of db/db diabetic mice. Mol Endocrinol. 2007;21:972–986. doi: 10.1210/me.2006-0249.PubMedCrossRefGoogle Scholar
  69. 69.
    Debrunner M, Schuiki E, Minder E, et al. Proinflammatory cytokines in acute myocardial infarction with and without cardiogenic shock. Clin Res Cardiol. 2008;97:298–305. doi: 10.1007/s00392-007-0626-5.PubMedCrossRefGoogle Scholar
  70. 70.
    Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352:1685–1695. doi: 10.1056/NEJMra043430.PubMedCrossRefGoogle Scholar
  71. 71.
    Oppenheim JJ, Feldmann M. Introduction to the role of cytokines in innate host defense and adaptative immunity. Elsevier; 2001:3–20.Google Scholar
  72. 72.
    Wang B, Trayhurn P. Acute and prolonged effects of TNF-alpha on the expression and secretion of inflammation-related adipokines by human adipocytes differentiated in culture. Pflugers Arch. 2006;452:418–427. doi: 10.1007/s00424-006-0055-8.PubMedCrossRefGoogle Scholar
  73. 73.
    Hector J, Schwarzloh B, Goehring J, et al. TNF-alpha alters visfatin and adiponectin levels in human fat. Horm Metab Res. 2007;39:250–255. doi: 10.1055/s-2007-973075.PubMedCrossRefGoogle Scholar
  74. 74.
    Mateo T, Naim Abu Nabh Y, Losada M, et al. A critical role for TNF-alpha in the selective attachment of mononuclear leukocytes to angiotensin-II-stimulated arterioles. Blood. 2007;110:1895–1902. doi: 10.1182/blood-2007-01-070607.PubMedCrossRefGoogle Scholar
  75. 75.
    Aso Y. Plasminogen activator inhibitor in vascular inflammation and thrombosis. Front Biosci. 2007;12:2957–2966. doi: 10.2741/2285.PubMedCrossRefGoogle Scholar
  76. 76.
    Maruyoshi H, Kojima S, Funahashi T, et al. Adiponectin is inversely related to plasminogen activator inhibitor type 1 in patients with stable exertional angina. Thromb Haemost. 2004;91:1026–1030.PubMedGoogle Scholar
  77. 77.
    Liang X, Kanjanabuch T, Mao SL, et al. Plasminogen activator inhibitor-1 modulates adipocyte differentiation. Am J Physiol Endocrinol Metab. 2006;290:E103–E113. doi: 10.1152/ajpendo.00605.2004.PubMedCrossRefGoogle Scholar
  78. 78.
    Montani JP, Carroll JF, Dwyer TM, Antic V, Yang Z, Dulloo AG. Ectopic fat storage in heart, blood vessels and kidneys in the pathogenesis of cardiovascular diseases. Int J Obes. 2004;28:S58–S65. doi: 10.1038/sj.ijo.0802858.CrossRefGoogle Scholar
  79. 79.
    Laing KJ, Secombes CJ. Chemokines. Dev Comp Immunol. 2004;28:443–460. doi: 10.1016/j.dci.2003.09.006.PubMedCrossRefGoogle Scholar
  80. 80.
    Kralisch S, Bluher M, Paschke R, Stumvoll M, Fasshauer M. Adipokines and adipocyte targets in the future management of obesity and the metabolic syndrome. Mini Rev Med Chem. 2007;7:39–45. doi: 10.2174/138955707779317821.PubMedCrossRefGoogle Scholar
  81. 81.
    Mazurek T, Zhang L, Zalewski A, et al. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation. 2003;108:2460–2466. doi: 10.1161/01.CIR.0000099542.57313.C5.PubMedCrossRefGoogle Scholar
  82. 82.
    Kim MP, Wahl LM, Yanek LR, Becker DM, Becker LC. A monocyte chemoattractant protein-1 gene polymorphism is associated with occult ischemia in a high-risk asymptomatic population. Atherosclerosis. 2007;192:366–372. doi: 10.1016/j.atherosclerosis.2006.06.029.CrossRefGoogle Scholar
  83. 83.
    Chabowski A, Zmijewska M, Gorski J, Bonen A, Kamiński K, Winnicka MM. Effect of IL-6 deficiency on myocardial expression of fatty acid transporters and intracellular lipid deposits. J Physiol Pharmacol. 2007;58:73–82.PubMedGoogle Scholar
  84. 84.
    Smart N, Mojet MH, Latchman DS, Marber MS, Duchen MR, Heads RJ. IL-6 induces PI3-kinase and nitric oxide-dependent protection and preserves mitochondrial function in cardiomyocytes. Cardiovasc Res. 2006;69:164–177. doi: 10.1016/j.cardiores.2005.08.017.PubMedCrossRefGoogle Scholar
  85. 85.
    Nishida M, Moriyama Y, Ishii K, et al. Effects of IL-6, adiponectin, CRP and metabolic syndrome on subclinical atherosclerosis. Clin Chim Acta. 2007;384:99–104. doi: 10.1016/j.cca.2007.06.009.PubMedCrossRefGoogle Scholar
  86. 86.
    Tilg H, Moschen AR. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol. 2006;6:772–783.PubMedCrossRefGoogle Scholar
  87. 87.
    Bastard JP, Maachi M, Lagathu C, Kim MJ, Caron M. Recent advances in the relationship between obesity, inflammation and insulin resistance. Eur Cytokine Netw. 2006;17:4–12.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Susan E. Wozniak
    • 1
  • Laura L. Gee
    • 1
  • Mitchell S. Wachtel
    • 2
  • Eldo E. Frezza
    • 1
    • 3
    Email author
  1. 1.Department of SurgeryTexas Tech University Health Sciences CenterLubbockUSA
  2. 2.Department of PathologyTexas Tech University Health Sciences CenterLubbockUSA
  3. 3.New Life BariatricChicagoUSA

Personalised recommendations