Digestive Diseases and Sciences

, Volume 54, Issue 9, pp 1892–1900

Change of Intestinal Microbiota with Elemental Diet and Its Impact on Therapeutic Effects in a Murine Model of Chronic Colitis

  • Takayuki Kajiura
  • Tomoko Takeda
  • Shinji Sakata
  • Mitsuo Sakamoto
  • Masaki Hashimoto
  • Hideki Suzuki
  • Manabu Suzuki
  • Yoshimi Benno
Original Article


Elemental diet (ED) has been used as an enteral nutritional therapy for Crohn’s disease. However, the precise mechanisms of ED remain unclear. In interleukin-10 (IL-10)-deficient cell-transferred mice, we investigated the change of intestinal microbiota with ED using molecular terminal-restriction fragment length polymorphism (T-RFLP) analysis and culture method, and evaluated its influence on therapeutic effects of ED. ED significantly suppressed intestinal inflammation. The total amount of bacteria in colitis mice fed the regular diet was higher than in normal mice but decreased in colitis mice fed ED. T-RFLP profiles of the ED group markedly differed from those of the regular diet groups. The diversity of bacterial species in the ED group decreased to 60% of that found in the regular diet groups. Among the cultivated bacteria, the change in lactic acid bacteria composition was remarkable. Lactobacillus reuteri and L. johnsonii decreased and Enterococcus faecalis and E. durans increased in the ED group. The culture supernatant of L. reuteri isolates induced significant tumor necrosis factor-alpha (TNF-α) and IL-6 activity in RAW 264 cells, while the culture supernatant of E. faecalis and E. durans barely induced their activity. These data suggested that reduction in amount and diversity of intestinal microbiota and decrease of proinflammatory cytokines via a change in composition of lactic acid bacteria by ED seem to contribute to reduction of bowel inflammation in this model.


IL-10 deficient mice Elemental diet Microbiota Inflammatory cytokines 


  1. 1.
    Isaacs KL, Lewis JD, Sandborn WJ, Sands BE, Targan SR. State of the art: IBD therapy and clinical trials in IBD. Inflamm Bowel Dis. 2005;11(l):S3–S12.PubMedCrossRefGoogle Scholar
  2. 2.
    Landers CJ, Cohavy O, Misra R, et al. Selected loss of tolerance evidenced by Crohn’s disease-associated immune responses to auto-and microbial antigens. Gastroenterology. 2002;123:689–699. doi:10.1053/gast.2002.35379.PubMedCrossRefGoogle Scholar
  3. 3.
    Main J, McKenzie H, Yeaman GR, et al. Antibody to Saccharomyces cerevisiae (bakers’ yeast) in Crohn’s disease. BMJ. 1988;297:1105–1106.PubMedCrossRefGoogle Scholar
  4. 4.
    Mow WS, Vasiliauskas EA, Lin YC, et al. Association of antibody responses to microbial antigens and complications of small bowel Crohn’s disease. Gastroenterology. 2004;126:414–424. doi:10.1053/j.gastro.2003.11.015.PubMedCrossRefGoogle Scholar
  5. 5.
    Quinton JF, Sendid B, Reumaux D, et al. Anti-Saccharomyces cerevisiae mannan antibodies combined with antineutrophil cytoplasmic autoantibodies in inflammatory bowel disease: prevalence and diagnostic role. Gut. 1998;42:788–791.PubMedCrossRefGoogle Scholar
  6. 6.
    Sutton CL, Kim J, Yamane A, et al. Identification of a novel bacterial sequence associated with Crohn’s disease. Gastroenterology. 2000;119:23–31. doi:10.1053/gast.2000.8519.PubMedCrossRefGoogle Scholar
  7. 7.
    Elson CO, Cong Y, McCracken VJ, Dimmitt RA, Lorenz RG, Weaver CT. Experimental models of inflammatory bowel disease reveal innate, adaptive, and regulatory mechanisms of host dialogue with the microbiota. Immunol Rev. 2005;206:260–276. doi:10.1111/j.0105-2896.2005.00291.x.PubMedCrossRefGoogle Scholar
  8. 8.
    Sartor RB. Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics, and prebiotics. Gastroenterology. 2004;126:1620–1633. doi:10.1053/j.gastro.2004.03.024.PubMedCrossRefGoogle Scholar
  9. 9.
    Davidson NJ, Leach MW, Fort MM, et al. T helper cell 1-type CD4+ T cells, but not B cells, mediate colitis in interleukin 10-deficient mice. J Exp Med. 1996;184:241–251. doi:10.1084/jem.184.1.241.PubMedCrossRefGoogle Scholar
  10. 10.
    Fox JG, Gorelick PL, Kullberg MC, Ge Z, Dewhirst FE, Ward JM. A novel urease-negative Helicobacter species associated with colitis and typhlitis in IL-10-deficient mice. Infect Immun. 1999;67:1757–1762.PubMedGoogle Scholar
  11. 11.
    Kullberg MC, Jankovic D, Gorelick PL, et al. Bacteria-triggered CD4(+) T regulatory cells suppress Helicobacter hepaticus-induced colitis. J Exp Med. 2002;196:505–515. doi:10.1084/jem.20020556.PubMedCrossRefGoogle Scholar
  12. 12.
    Kullberg MC, Andersen JF, Gorelick PL, et al. Induction of colitis by a CD4+ T cell clone specific for a bacterial epitope. Proc Natl Acad Sci USA. 2003;100:15830–15835. doi:10.1073/pnas.2534546100.PubMedCrossRefGoogle Scholar
  13. 13.
    Madsen KL, Doyle JS, Tavernini MM, Jewell LD, Rennie RP, Fedorak RN. Antibiotic therapy attenuates colitis in interleukin 10 gene-deficient mice. Gastroenterology. 2000;118:1094–1105. doi:10.1016/S0016-5085(00)70362-3.PubMedCrossRefGoogle Scholar
  14. 14.
    Sydora BC, Tavernini MM, Doyle JS, Fedorak RN. Association with selected bacteria does not cause enterocolitis in IL-10 gene-deficient mice despite a systemic immune response. Dig Dis Sci. 2005;50:905–913. doi:10.1007/s10620-005-2663-0.PubMedCrossRefGoogle Scholar
  15. 15.
    O’Moráin C, Segal AW, Levi AJ. Elemental diet as primary treatment of acute Crohn’s disease: a controlled trial. Br Med J (Clin Res Ed). 1984;288:1859–1862.CrossRefGoogle Scholar
  16. 16.
    Okada M, Yao T, Yamamoto T, et al. Controlled trial comparing an elemental diet with prednisolone in the treatment of active Crohn’s disease. Hepatogastroenterology. 1990;37:72–80.PubMedGoogle Scholar
  17. 17.
    Gorard DA, Hunt JB, Payne-James JJ, et al. Initial response and subsequent course of Crohn’s disease treated with elemental diet or prednisolone. Gut. 1993;34:1198–1202. doi:10.1136/gut.34.9.1198.PubMedCrossRefGoogle Scholar
  18. 18.
    Yamamoto T, Nakahigashi M, Umegae S, Kitagawa T, Matsumoto K. Impact of elemental diet on mucosal inflammation in patients with active Crohn’s disease: cytokine production and endoscopic and histological findings. Inflamm Bowel Dis. 2005;11:580–588. doi:10.1097/01.MIB.0000161307.58327.96.PubMedCrossRefGoogle Scholar
  19. 19.
    Ikenoue Y, Tagami T, Murata M. Development and validation of a novel IL-10 deficient cell transfer model for colitis. Int Immunopharmacol. 2005;5:993–1006. doi:10.1016/j.intimp.2005.01.009.PubMedCrossRefGoogle Scholar
  20. 20.
    Clement BG, Kitts CL. Isolating PCR-quality DNA from human feces with a soil DNA kit. Biotechniques. 2000;28:640–646.PubMedGoogle Scholar
  21. 21.
    Kibe R, Sakamoto M, Hayashi H, Yokota H, Benno Y. Maturation of the murine cecal microbiota as revealed by terminal restriction fragment length polymorphism and 16S rRNA gene clone libraries. FEMS Microbiol Lett. 2004;235:139–146. doi:10.1111/j.1574-6968.2004.tb09578.x.PubMedCrossRefGoogle Scholar
  22. 22.
    Heilig HG, Zoetendal EG, Vaughan EE, Marteau P, Akkermans AD, de Vos WM. Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA. Appl Environ Microbiol. 2002;68:114–123. doi:10.1128/AEM.68.1.114-123.2002.PubMedCrossRefGoogle Scholar
  23. 23.
    Sakamoto M, Hayashi H, Benno Y. Terminal restriction fragment length polymorphism analysis for human fecal microbiota and its application for analysis of complex bifidobacterial communities. Microbiol Immunol. 2003;47:133–142.PubMedGoogle Scholar
  24. 24.
    Teramoto F, Rokutan K, Kawakami Y, et al. Effect of 4G-β-D-galactosylsucrose (lactosucrose) on faecal microflora in patients with chronic inflammatory bowel disease. J Gastroenterol. 1996;31:33–39. doi:10.1007/BF01211184.PubMedCrossRefGoogle Scholar
  25. 25.
    Benno Y, Sawada K, Mitsuoka T. The intestinal microflora of infants: composition of fecal flora in breast-fed and bottle-fed infants. Microbiol Immunol. 1984;28:975–986.PubMedGoogle Scholar
  26. 26.
    Peña JA, Li SY, Wilson PH, Thibodeau SA, Szary AJ, Versalovic J. Genotypic and phenotypic studies of murine intestinal lactobacilli: species differences in mice with and without colitis. Appl Environ Microbiol. 2004;70:558–568. doi:10.1128/AEM.70.1.558-568.2004.PubMedCrossRefGoogle Scholar
  27. 27.
    Bamba T, Shimoyama T, Sasaki M, et al. Dietary fat attenuates the benefits of an elemental diet in active Crohn’s disease: a randomized, controlled trial. Eur J Gastroenterol Hepatol. 2003;15:151–157. doi:10.1097/00042737-200302000-00008.PubMedCrossRefGoogle Scholar
  28. 28.
    Takagi S, Utsunomiya K, Kuriyama S, et al. Effectiveness of an ‘half elemental diet’ as maintenance therapy for Crohn’s disease: a randomized-controlled trial. Aliment Pharmacol Ther. 2006;24:1333–1340. doi:10.1111/j.1365-2036.2006.03120.x.PubMedCrossRefGoogle Scholar
  29. 29.
    Johnson T, Macdonald S, Hill SM, Thomas A, Murphy MS. Treatment of active Crohn’s disease in children using partial enteral nutrition with liquid formula: a randomised controlled trial. Gut. 2006;55:356–361. doi:10.1136/gut.2004.062554.PubMedCrossRefGoogle Scholar
  30. 30.
    Borrelli O, Cordischi L, Cirulli M, et al. Polymeric diet alone versus corticosteroids in the treatment of active pediatric Crohn’s disease: a randomized controlled open-label trial. Clin Gastroenterol Hepatol. 2006;4:744–753. doi:10.1016/j.cgh.2006.03.010.PubMedCrossRefGoogle Scholar
  31. 31.
    Wehkamp J, Salzman NH, Porter E, et al. Reduced Paneth cell alpha-defensins in ileal Crohn’s disease. Proc Natl Acad Sci USA. 2005;102:18129–18134. doi:10.1073/pnas.0505256102.PubMedCrossRefGoogle Scholar
  32. 32.
    Kobayashi KS, Chamaillard M, Ogura Y, et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science. 2005;307:731–734. doi:10.1126/science.1104911.PubMedCrossRefGoogle Scholar
  33. 33.
    Vernia P, Caprilli R, Latella G, Barbetti F, Magliocca FM, Cittadini M. Fecal lactate and ulcerative colitis. Gastroenterology. 1988;95:1564–1568.PubMedGoogle Scholar
  34. 34.
    Hove H, Mortensen PB. Influence of intestinal inflammation (IBD) and small and large bowel length on fecal short-chain fatty acids and lactate. Dig Dis Sci. 1995;40:33–39. doi:10.1007/BF02063938.CrossRefGoogle Scholar
  35. 35.
    Whelan K, Judd PA, Preedy VR, Taylor MA. Enteral feeding: the effect on faecal output, the faecal microflora and SCFA concentrations. Proc Nutr Soc. 2004;165:105–113.Google Scholar
  36. 36.
    Whelan K, Judd PA, Preedy VR, Simmering R, Jann A, Taylor MA. Fructooligosaccharides and fiber partially prevent the alterations in fecal microbiota and short-chain fatty acid concentrations caused by standard enteral formula in healthy humans. J Nutr. 2005;135:1896–1902.PubMedGoogle Scholar
  37. 37.
    Winitz M, Adams RF, Seedman DA, Davis PN, Jayko LG, Hamilton JA. Studies in metabolic nutrition employing chemically defined diets. II. Effects on gut microflora populations. Am J Clin Nutr. 1970;23:546–559.PubMedGoogle Scholar
  38. 38.
    Lionetti P, Callegari ML, Ferrari S, et al. Enteral nutrition and microflora in pediatric Crohn’s disease. J Parenter Enter Nutr. 2005;29:S173–S175. doi:10.1177/01486071050290S4S173.CrossRefGoogle Scholar
  39. 39.
    Pimentel M, Constantino T, Kong Y, Bajwa M, Rezaei A, Park S. A 14-day elemental diet is highly effective in normalizing the lactulose breath test. Dig Dis Sci. 2004;49:73–77. doi:10.1023/B:DDAS.0000011605.43979.e1.PubMedCrossRefGoogle Scholar
  40. 40.
    Tedelind S, Westberg F, Kjerrulf M, Vidal A. Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: a study with relevance to inflammatory bowel disease. World J Gastroenterol. 2007;28:2826–2832.Google Scholar
  41. 41.
    Liu WT, Marsh TL, Cheng H, Forney LJ. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol. 1997;63:4516–4522.PubMedGoogle Scholar
  42. 42.
    Sakamoto M, Takeuchi Y, Umeda M, Ishikawa I, Benno Y. Application of terminal RFLP analysis to characterize oral bacterial flora in saliva of healthy subjects and patients with periodontitis. J Med Microbiol. 2003;52:79–89. doi:10.1099/jmm.0.04991-0.PubMedCrossRefGoogle Scholar
  43. 43.
    Fiocchi C. Inflammatory bowel disease pathogenesis: therapeutic implications. Chin J Dig Dis. 2005;6:6–9. doi:10.1111/j.1443-9573.2005.00191.x.PubMedCrossRefGoogle Scholar
  44. 44.
    Karimi O, Pena AS, van Bodegraven AA. Probiotics (VSL#3) in arthralgia in patients with ulcerative colitis and Crohn’s disease: a pilot study. Drugs Today (Barc). 2005;41:453–459. doi:10.1358/dot.2005.41.7.917341.CrossRefGoogle Scholar
  45. 45.
    Kim SC, Tonkonogy SL, Albright CA, et al. Variable phenotypes of enterocolitis in interleukin 10-deficient mice monoassociated with two different commensal bacteria. Gastroenterology. 2005;128:891–906. doi:10.1053/j.gastro.2005.02.009.PubMedCrossRefGoogle Scholar
  46. 46.
    Stepankova R, Powrie F, Kofronova O, et al. Segmented filamentous bacteria in a defined bacterial cocktail induce intestinal inflammation in SCID mice reconstituted with CD45RB(high) CD4+ T cells. Inflamm Bowel Dis. 2007;13:1202–1211. doi:10.1002/ibd.20221.PubMedCrossRefGoogle Scholar
  47. 47.
    Kishi D, Takahashi I, Kai Y, et al. Alteration of V beta usage and cytokine production of CD4+ TCR beta beta homodimer T cells by elimination of Bacteroides vulgatus prevents colitis in TCR alpha-chain-deficient mice. J Immunol. 2000;165:5891–5899.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Takayuki Kajiura
    • 1
    • 2
  • Tomoko Takeda
    • 1
  • Shinji Sakata
    • 2
  • Mitsuo Sakamoto
    • 2
  • Masaki Hashimoto
    • 1
  • Hideki Suzuki
    • 1
  • Manabu Suzuki
    • 1
  • Yoshimi Benno
    • 2
  1. 1.Gastroenterology Research, Pharmaceutical Research LaboratoriesAjinomoto Co., IncKawasakiJapan
  2. 2.Microbe Division/Japan Collection of MicroorganismsRIKEN BioResource CenterWakoJapan

Personalised recommendations