Digestive Diseases and Sciences

, Volume 54, Issue 7, pp 1440–1448 | Cite as

Expression of Alkaline Sphingomyelinase in Yeast Cells and Anti-inflammatory Effects of the Expressed Enzyme in a Rat Colitis Model

  • David Andersson
  • Knut Kotarsky
  • Jun Wu
  • William Agace
  • Rui-Dong DuanEmail author
Original Article


Alkaline sphingomyelinase (Alk-SMase) is a key enzyme in the intestinal tract for digestion of dietary sphingomyelin (SM), which generates lipid messengers with cell-cycle regulating effects. The enzyme is significantly decreased in ulcerative colitis and colon cancer. Based on this information, we wanted to investigate whether the enzyme had preventive effects against murine colitis. We report herein a method to express a biologically active Alk-SMase from Pichia pastoris yeast cells. By using the expressed enzyme to treat a rat colitis model induced by dextran sulfate sodium, we found that intrarectal instillation of Alk-SMase once daily for 1 week significantly reduced the inflammation score and protected the colonic epithelium from inflammatory destruction. We found a tendency for decreased tumor necrosis factor (TNF)-α expression in the Alk-SMase-treated group. This study, for the first time, provides a method to produce the enzyme and shows the potential applicability of the enzyme in the treatment of inflammatory bowel diseases.


Alkaline sphingomyelinase NPP7 Ulcerative colitis Yeast expression TNF-α 



The work was supported by the grants from the Swedish Cancer Society, the Albert Påhlsson Foundation, the Swedish Research Council, and the Research Foundation of Lund University Hospital. Dr. Yajun Cheng is thanked for technical assistance and Dr. Åke Nilsson for stimulating discussions. The current address for Jun Wu is Beijing Institute of Biotechnology, Beijing, 100071, China.


  1. 1.
    Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease. Nature. 2007;448:427–434. doi: 10.1038/nature06005.PubMedCrossRefGoogle Scholar
  2. 2.
    Duan RD, Hertervig E, Nyberg L, et al. Distribution of alkaline sphingomyelinase activity in human beings and animals. Tissue and species differences. Dig Dis Sci. 1996;41:1801–1806. doi: 10.1007/BF02088748.PubMedCrossRefGoogle Scholar
  3. 3.
    Lundgren P, Nilsson Å, Duan RD. Distribution and properties of neutral ceramidase activity in rat intestinal tract. Dig Dis Sci. 2001;46:765–772. doi: 10.1023/A:1010792031910.PubMedCrossRefGoogle Scholar
  4. 4.
    Hannun YA, Obeid LM. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol. 2008;9:139–150. doi: 10.1038/nrm2329.PubMedCrossRefGoogle Scholar
  5. 5.
    Nilsson Å. The presence of sphingomyelin- and ceramide-cleaving enzymes in the small intestinal tract. Biochim Biophys Acta. 1969;176:339–347.PubMedGoogle Scholar
  6. 6.
    Duan RD, Cheng Y, Hansen G, et al. Purification, localization, and expression of human intestinal alkaline sphingomyelinase. J Lipid Res. 2003;44:1241–1250. doi: 10.1194/jlr.M300037-JLR200.PubMedCrossRefGoogle Scholar
  7. 7.
    Duan RD, Bergman T, Xu N, et al. Identification of human intestinal alkaline sphingomyelinase as a novel ecto-enzyme related to the nucleotide phosphodiesterase family. J Biol Chem. 2003;278:38528–38536. doi: 10.1074/jbc.M305437200.PubMedCrossRefGoogle Scholar
  8. 8.
    Hertervig E, Nilsson A, Nyberg L, Duan RD. Alkaline sphingomyelinase activity is decreased in human colorectal carcinoma. Cancer. 1997;79:448–453.PubMedCrossRefGoogle Scholar
  9. 9.
    Wu J, Cheng Y, Nilsson A, Duan RD. Identification of one exon deletion of intestinal alkaline sphingomyelinase in colon cancer HT-29 cells and a differentiation-related expression of the wild-type enzyme in Caco-2 cells. Carcinogenesis. 2004;25:1327–1333. doi: 10.1093/carcin/bgh140.PubMedCrossRefGoogle Scholar
  10. 10.
    Cheng Y, Wu J, Hertervig E, et al. Identification of aberrant forms of alkaline sphingomyelinase (NPP7) associated with human liver tumorigenesis. Br J Cancer. 2007;97:1441–1448. doi: 10.1038/sj.bjc.6604013.PubMedCrossRefGoogle Scholar
  11. 11.
    Sjöqvist U, Hertervig E, Nilsson A, et al. Chronic colitis is associated with a reduction of mucosal alkaline sphingomyelinase activity. Inflamm Bowel Dis. 2002;8:258–263. doi: 10.1097/00054725-200207000-00004.PubMedCrossRefGoogle Scholar
  12. 12.
    Wu J, Nilsson A, Jonsson BA, et al. Intestinal alkaline sphingomyelinase hydrolyses and inactivates platelet-activating factor by a phospholipase C activity. Biochem J. 2006;394:299–308. doi: 10.1042/BJ20051121.PubMedCrossRefGoogle Scholar
  13. 13.
    Stoffel W. Chemical synthesis of choline-labeled lecithins and sphingomyelin. Methods Enzymol. 1975;36:533–541. doi: 10.1016/0076-6879(75)35181-1.Google Scholar
  14. 14.
    Blank M, Cress EA, Smith ZL, Snyder F. Meats and fish consumed in the American diet contain substantial amounts of ether-linked phospholipids. J Nutr. 1992;122:1656–1661.PubMedGoogle Scholar
  15. 15.
    Wallace JL, MacNaughton WK, Morris GP, Beck PL. Inhibition of leukotriene synthesis markedly accelerates healing in a rat model of inflammatory bowel disease. Gastroenterology. 1989;96:29–36.PubMedGoogle Scholar
  16. 16.
    Frodin M, Sekine N, Roche E, et al. Glucose, other secretagogues, and nerve growth factor stimulate mitogen- activated protein kinase in the insulin-secreting beta-cell line, INS-1. J Biol Chem. 1995;270:7882–7889. doi: 10.1074/jbc.270.14.7882.PubMedCrossRefGoogle Scholar
  17. 17.
    Kotarsky K, Boketoft A, Bristulf J, et al. Lysophosphatidic acid binds to and activates GPR92, a G protein-coupled receptor highly expressed in gastrointestinal lymphocytes. J Pharmacol Exp Ther. 2006;318:619–628. doi: 10.1124/jpet.105.098848.PubMedCrossRefGoogle Scholar
  18. 18.
    Peixoto A, Monteiro M, Rocha B, Veiga-Fernandes H. Quantification of multiple gene expression in individual cells. Genome Res. 2004;14:1938–1947. doi: 10.1101/gr.2890204.PubMedCrossRefGoogle Scholar
  19. 19.
    Wu J, Cheng Y, Palmberg C, Bergman T, Nilsson A, Duan RD. Cloning of alkaline sphingomyelinase from rat intestinal mucosa and adjusting of the hypothetical protein XP_221184 in GenBank. Biochim Biophys Acta. 2005;1687:94–102.PubMedGoogle Scholar
  20. 20.
    Cheng Y, Nilsson Å, Tömquist E, Duan RD. Purification, characterization and expression of rat intestinal alkaline sphingomyelinase. J Lipid Res. 2002;43:316–324.PubMedGoogle Scholar
  21. 21.
    Cereghino GP, Cereghino JL, Ilgen C, Cregg JM. Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris. Curr Opin Biotechnol. 2002;13:329–332. doi: 10.1016/S0958-1669(02)00330-0.PubMedCrossRefGoogle Scholar
  22. 22.
    Wu J, Hansen GH, Nilsson A, Duan RD. Functional studies of human intestinal alkaline sphingomyelinase by deglycosylation and mutagenesis. Biochem J. 2005;386:153–160. doi: 10.1042/BJ20041455.PubMedCrossRefGoogle Scholar
  23. 23.
    Klotz U, Schwab M. Topical delivery of therapeutic agents in the treatment of inflammatory bowel disease. Adv Drug Deliv Rev. 2005;57:267–279. doi: 10.1016/j.addr.2004.08.007.PubMedCrossRefGoogle Scholar
  24. 24.
    Gaudio E, Taddei G, Vetuschi A, et al. Dextran sulfate sodium (DSS) colitis in rats: clinical, structural, and ultrastructural aspects. Dig Dis Sci. 1999;44:1458–1475. doi: 10.1023/A:1026620322859.PubMedCrossRefGoogle Scholar
  25. 25.
    Weber CR, Turner JR. Inflammatory bowel disease: is it really just another break in the wall? Gut. 2007;56:6–8. doi: 10.1136/gut.2006.104182.PubMedCrossRefGoogle Scholar
  26. 26.
    Jarnerot G, Hertervig E, Friis-Liby I, et al. Infliximab as rescue therapy in severe to moderately severe ulcerative colitis: a randomized, placebo-controlled study. Gastroenterology. 2005;128:1805–1811. doi: 10.1053/j.gastro.2005.03.003.PubMedCrossRefGoogle Scholar
  27. 27.
    Maines LW, Fitzpatrick LR, French KJ, et al. Suppression of ulcerative colitis in mice by orally available inhibitors of sphingosine kinase. Dig Dis Sci. 2008;53:997–1012. doi: 10.1007/s10620-007-0133-6.PubMedCrossRefGoogle Scholar
  28. 28.
    Nassif A, Longo WE, Mazuski JE, Vernava AM, Kaminski DL. Role of cytokines and platelet-activating factor in inflammatory bowel disease. Implications for therapy. Dis Colon Rectum. 1996;39:217–223. doi: 10.1007/BF02068079.PubMedCrossRefGoogle Scholar
  29. 29.
    Ewer AK. Role of platelet-activating factor in the pathophysiology of necrotizing enterocolitis. Acta Paediatr Suppl. 2002;91:2–5. doi: 10.1080/08035250260095717.PubMedCrossRefGoogle Scholar
  30. 30.
    Saslowsky DE, Lencer WI. Conversion of apical plasma membrane sphingomyelin to ceramide attenuates the intoxication of host cells by cholera toxin. Cell Microbiol. 2008;10:67–80.PubMedGoogle Scholar
  31. 31.
    Bock J, Liebisch G, Schweimer J, Schmitz G, Rogler G. Exogenous sphingomyelinase causes impaired intestinal epithelial barrier function. World J Gastroenterol. 2007;13:5217–5225.PubMedGoogle Scholar
  32. 32.
    Possemiers S, Van Camp J, Bolca S, Verstraete W. Characterization of the bactericidal effect of dietary sphingosine and its activity under intestinal conditions. Int J Food Microbiol. 2005;105:59–70. doi: 10.1016/j.ijfoodmicro.2005.05.007.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • David Andersson
    • 1
  • Knut Kotarsky
    • 2
  • Jun Wu
    • 1
  • William Agace
    • 2
  • Rui-Dong Duan
    • 1
    Email author
  1. 1.Gastroenterology Laboratory, Institution of Clinical Science, Biomedical Center, B11Lund UniversityLundSweden
  2. 2.Immunology Unit, BMC I13Lund UniversityLundSweden

Personalised recommendations