Digestive Diseases and Sciences

, Volume 54, Issue 5, pp 1108–1114 | Cite as

The Simultaneous Expression of Peroxisome Proliferator-Activated Receptor Delta and Cyclooxygenase-2 May Enhance Angiogenesis and Tumor Venous Invasion in Tissues of Colorectal Cancers

  • Masahiro Yoshinaga
  • Yosuke Kitamura
  • Tomohito Chaen
  • Shinsaku Yamashita
  • Satoru Tsuruta
  • Teruaki Hisano
  • Yoichi Ikeda
  • Hironori Sakai
  • Kazuhiko Nakamura
  • Ryoichi Takayanagi
  • Yoichi Muto


We conducted this study to evaluate the impact of the expression of peroxisome proliferator-activated receptor delta on angiogenesis in tissue samples of colorectal cancer. We examined 52 samples of primary human colorectal carcinomas and matched normal adjacent tissues to evaluate the expression of peroxisome proliferator-activated receptor delta, cyclooxygenase-2, vascular endothelial growth factor-A, and CD34 through immunohistochemical analysis. Peroxisome proliferator-activated receptor delta was expressed in 25 (48.1%), and cyclooxygenase-2 was expressed in 26 (50.0%) of total colorectal cancer tissues. Tissue samples were divided into four groups, according to the expression of peroxisome proliferator-activated receptor delta and cyclooxygenase-2. The positive rate of vascular endothelial growth factor-A, the levels of microvascular density, and the incidence of venous vessel invasion in peroxisome proliferator-activated receptor delta (+)/cyclooxygenase-2 (+) samples exceeded significantly those in the other three groups of tissue samples (P < 0.05). The results suggest that the axis of the cyclooxygenase-2/peroxisome proliferator-activated receptor delta signal pathway might play a crucial role in the development of colorectal cancers by enhancing angiogenesis.


Peroxisome proliferator-activated receptor (PPAR) delta Cyclooxygenase (COX-2) Angiogenesis Venous vessel invasion Colorectal cancer 


  1. 1.
    Willson TM, Brown PJ, Sternbach DD, Henke BR. The PPARs: from orphan receptors to drug discovery. J Med Chem. 2000;43:527–550. doi:10.1021/jm990554g.PubMedCrossRefGoogle Scholar
  2. 2.
    Kliewer SA, Forman BM, Blumberg B, et al. Differential expression and activation of a family of murine peroxisome proliferator-activated receptors. Proc Natl Acad Sci USA. 1994;91:7355–7359. doi:10.1073/pnas.91.15.7355.PubMedCrossRefGoogle Scholar
  3. 3.
    Kliewer SA, Lehmann JM, Milburn MV, Willson TM. The PPARs and PXRs: nuclear xenobiotic receptors that define novel hormone signaling pathways. Recent Prog Horm Res. 2000;54:345–367.Google Scholar
  4. 4.
    Spiegelman BM. PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes. 1998;47:507–514. doi:10.2337/diabetes.47.4.507.PubMedCrossRefGoogle Scholar
  5. 5.
    Peters JM, Cattley RC, Gonzalez FJ. Role of PPAR alpha in the mechanism of action of the nongenotoxic carcinogen and peroxisome proliferator Wy-14,643. Carcinogenesis. 1997;18:2029–2033. doi:10.1093/carcin/18.11.2029.PubMedCrossRefGoogle Scholar
  6. 6.
    Reddy JK, Chu R. Peroxisome proliferator-induced pleiotropic responses: pursuit of a phenomenon. Ann NY Acad Sci. 1996;804:176–201. doi:10.1111/j.1749-6632.1996.tb18616.x.PubMedCrossRefGoogle Scholar
  7. 7.
    Tontonoz P, Singer S, Forman BM, et al. Terminal differentiation of human liposarcoma cells induced by ligands for peroxisome proliferator-activated receptor gamma and the retinoid X receptor. Proc Natl Acad Sci USA. 1997;94:237–241. doi:10.1073/pnas.94.1.237.PubMedCrossRefGoogle Scholar
  8. 8.
    Mueller E, Sarraf P, Tontonoz P, et al. Terminal differentiation of human breast cancer through PPAR gamma. Mol Cell. 1998;1:465–470. doi:10.1016/S1097-2765(00)80047-7.PubMedCrossRefGoogle Scholar
  9. 9.
    Sarraf P, Mueller E, Jones D, et al. Differentiation and reversal of malignant changes in colon cancer through PPAR gamma. Nat Med. 1998;4:1046–1052. doi:10.1038/2030.PubMedCrossRefGoogle Scholar
  10. 10.
    Brockman JA, Gupta RA, DuBois RN. Activation of PPAR gamma leads to inhibition of anchorage-independent growth of human colorectal cancer cells. Gastroenterology. 1998;115:1049–1055. doi:10.1016/S0016-5085(98)70072-1.PubMedCrossRefGoogle Scholar
  11. 11.
    He TC, Chan TA, Vogelstein B, Kinzler KW. PPARd is an APC regulated target of nonsteroidal anti-inflammatory drugs. Cell. 1999;99:335–345. doi:10.1016/S0092-8674(00)81664-5.PubMedCrossRefGoogle Scholar
  12. 12.
    Gupta RA, Wang D, Katkuri S, Wang H, Dey SK, DuBois RN. Activation of nuclear hormone receptor peroxisome proliferator-activated receptor-d accelerates intestinal adenoma growth. Nat Med. 2004;10:245–247. doi:10.1038/nm993.PubMedCrossRefGoogle Scholar
  13. 13.
    Takayama O, Yamamoto H, Damdinsuren B, et al. Expression of PPARd in multistage carcinogenesis of the colorectum: implications of malignant cancer morphology. Br J Cancer. 2006;95:889–895. doi:10.1038/sj.bjc.6603343.PubMedCrossRefGoogle Scholar
  14. 14.
    Harman FS, Nicol CJ, Marin HE, Ward JM, Gonzalez FJ, Peters JM. Peroxisome proliferator-activated receptor-d attenuates colon carcinogenesis. Nat Med. 2004;10:481–483. doi:10.1038/nm1026.PubMedCrossRefGoogle Scholar
  15. 15.
    Reed KR, Sansom OJ, Hayes AJ, et al. PPAR delta status and Apc-mediated tumorigenesis in the mouse intestine. Oncogene. 2004;23:8992–8996. doi:10.1038/sj.onc.1208143.PubMedCrossRefGoogle Scholar
  16. 16.
    Park BH, Vogelstein B, Kinzler KW. Genetic disruption of PPARd decreases the tumorigenicity of human colon cancer cells. Proc Natl Acad Sci USA. 2001;98:2598–2603. doi:10.1073/pnas.051630998.PubMedCrossRefGoogle Scholar
  17. 17.
    Bergsland EK. Vascular endothelial growth factor as a therapeutic target in cancer. Am J Health Syst Pharm. 2004;61:S4–S11.PubMedGoogle Scholar
  18. 18.
    Wang D, Wang H, Guo Y, et al. Crosstalk between peroxisome proliferator-activated receptor delta and VEGF stimulates cancer progression. Proc Natl Acad Sci USA. 2006;103:19069–19074. doi:10.1073/pnas.0607948103.PubMedCrossRefGoogle Scholar
  19. 19.
    Cutler NS, Graves-Deal R, LaFleur BJ, et al. Stromal production of prostacyclin confers an antiapoptotic effect to colonic epithelial cells. Cancer Res. 2003;63:1748–1751.PubMedGoogle Scholar
  20. 20.
    Wang D, Mann JR, DuBois RN. WNT and cyclooxygenase-2 crosstalk accelerates adenoma growth. Cell Cycle. 2004;3:1512–1515.PubMedGoogle Scholar
  21. 21.
    Wang D, Wang H, Shi Q, et al. Prostaglandin E(2) promotes colorectal adenoma growth via transactivation of the nuclear peroxisome proliferator-activated receptor delta. Cancer Cell. 2004;6:285–295. doi:10.1016/j.ccr.2004.08.011.PubMedCrossRefGoogle Scholar
  22. 22.
    Gupta RA, Tan J, Krause WF, et al. Prostacyclin-mediated activation of peroxisome proliferator-activated receptor delta in colorectal cancer. Proc Natl Acad Sci USA. 2000;97:13275–13280. doi:10.1073/pnas.97.24.13275.PubMedCrossRefGoogle Scholar
  23. 23.
    Piqueras L, Reynolds AR, Hodivala-Dilke KM, et al. Activation of PPAR beta/delta induces endothelial cell proliferation and angiogenesis. Arterioscler Thromb Vasc Biol. 2007;27:63–69. doi:10.1161/01.ATV.0000250972.83623.61.PubMedCrossRefGoogle Scholar
  24. 24.
    Yonenaga Y, Mori A, Onodera H, et al. Absence of smooth muscle actin-positive pericyte coverage of tumor vessels correlates with hematogenous metastasis and prognosis of colorectal cancer patients. Oncology. 2005;69:159–166. doi:10.1159/000087840.PubMedCrossRefGoogle Scholar
  25. 25.
    Onogawa S, Tanaka S, Oka S, et al. Clinical significance of angiogenesis in rectal carcinoid tumors. Oncol Rep. 2002;9:489–494.PubMedGoogle Scholar
  26. 26.
    Takebayashi Y, Aklyama S, Yamada K, Akiba S, Aikou T. Angiogenesis as an unfavorable prognostic factor in human colorectal carcinoma. Cancer. 1996;78:226–231. doi :10.1002/(SICI)1097-0142(19960715)78:2<226::AID-CNCR6>3.0.CO;2-J.Google Scholar
  27. 27.
    Rmali KA, Puntis MC, Jiang WG. Prognostic values of tumor endothelial markers in patients with colorectal cancer. World J Gastroenterol. 2005;11:1283–1286.PubMedGoogle Scholar
  28. 28.
    Choi HJ, Hyun MS, Jung GJ, Kim SS, Hong SH. Tumor angiogenesis as a prognostic predictor in colorectal carcinoma with special reference to mode of metastasis and recurrence. Oncology. 1998;55:575–581. doi:10.1159/000011915.PubMedCrossRefGoogle Scholar
  29. 29.
    Acikalin MF, Oner U, Topcu I, Yasar B, Kiper H, Colak E. Tumor angiogenesis and mast cell density in the prognostic assessment of colorectal carcinomas. Dig Liver Dis. 2005;37:162–169. doi:10.1016/j.dld.2004.09.028.PubMedCrossRefGoogle Scholar
  30. 30.
    Engel CJ, Bennett ST, Chambers AF, Doig GS, Kerkvliet N, O’Malley FP. Tumor angiogenesis predicts recurrence in invasive colorectal cancer when controlled for Dukes staging. Am J Surg Pathol. 1996;20:1260–1265. doi:10.1097/00000478-199610000-00012.PubMedCrossRefGoogle Scholar
  31. 31.
    Frank RE, Saclarides TJ, Leurgans S, Speziale NJ, Drab EA, Rubin DB. Tumor angiogenesis as a predictor of recurrence and survival in patients with node-negative colon cancer. Ann Surg. 1995;222:695–699. doi:10.1097/00000658-199512000-00002.PubMedCrossRefGoogle Scholar
  32. 32.
    Jubb AM, Hurwitz HI, Bai W, et al. Impact of vascular endothelial growth factor-A expression, thrombospondin-2 expression, and microvessel density on the treatment effect of bevacizumab in metastatic colorectal cancer. J Clin Oncol. 2006;24:217–227. doi:10.1200/JCO.2005.01.5388.PubMedCrossRefGoogle Scholar
  33. 33.
    Bossi P, Viale G, Lee AK, Alfano R, Coggi G, Bosari S. Angiogenesis in colorectal tumors: microvessel quantitation in adenomas and carcinomas with clinicopathological correlations. Cancer Res. 1995;55:5049–5053.PubMedGoogle Scholar
  34. 34.
    Gunther K, Radkow T, Reymond MA, et al. Angiogenesis and dendritic cell density are not correlated with metachronous distant metastasis in curatively operated rectal cancer. Int J Colorectal Dis. 2003;18:300–308.PubMedGoogle Scholar
  35. 35.
    Masunaga R, Kohno H, Dhar DK, et al. Cyclooxygenase-2 expression correlates with tumor neovascularization and prognosis in human colorectal carcinoma patients. Clin Cancer Res. 2000;6:4064–4068.PubMedGoogle Scholar
  36. 36.
    Liang P, Nakada I, Hong JW, et al. Prognostic significance of immunohistochemically detected blood and lymphatic vessel invasion in colorectal carcinoma: its impact on prognosis. Ann Surg Oncol. 2007;14:470–477. doi:10.1245/s10434-006-9189-3.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Masahiro Yoshinaga
    • 1
  • Yosuke Kitamura
    • 1
  • Tomohito Chaen
    • 1
  • Shinsaku Yamashita
    • 1
  • Satoru Tsuruta
    • 1
  • Teruaki Hisano
    • 1
  • Yoichi Ikeda
    • 2
  • Hironori Sakai
    • 1
  • Kazuhiko Nakamura
    • 3
  • Ryoichi Takayanagi
    • 3
  • Yoichi Muto
    • 2
  1. 1.Department of Gastroenterology, Hepathology, and NutritionNational Hospital Organization Beppu Medical CenterBeppuJapan
  2. 2.Department of SurgeryNational Hospital Organization Beppu Medical CenterBeppuJapan
  3. 3.Department of Medicine and Bioregulatory Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan

Personalised recommendations