Digestive Diseases and Sciences

, Volume 54, Issue 5, pp 1011–1014 | Cite as

Mutational Analysis of WTX Gene in Wnt/ β-Catenin Pathway in Gastric, Colorectal, and Hepatocellular Carcinomas

ORIGINAL ARTICLE

Abstract

A recent study of Wilms’ tumors discovered a new X chromosome gene, Wilms’ tumor gene on the X chromosome (WTX), which was found to harbor small deletions and point mutations. WTX protein negatively regulates Wnt/ β-catenin signaling, and is considered a tumor-suppressor gene. One of the questions about the WTX gene is whether the genetic alterations of the WTX gene are specific to only Wilms’ tumors. To see whether somatic point mutations of WTX occur in other malignancies, we analyzed the WTX gene for the detection of mutations in 141 cancer tissues by a single-strand conformation polymorphism assay. The cancer tissues consisted of 47 gastric adenocarcinomas, 47 colorectal adenocarcinomas, and 47 hepatocellular carcinomas. Overall, we detected one WTX mutation in the colorectal carcinomas (1/47; 2.1%), but there was no WTX mutation in other cancers analyzed. The detected mutation was a missense mutation (c. 1117G > A (p.Ala373Thr)). Although the WTX mutation is common in Wilms’ tumors, our data indicate that it is rare in colorectal, gastric, and hepatocellular carcinomas. The data also suggest that deregulation of Wnt/ β-catenin signaling by WTX gene mutation may be a rare event in the pathogenesis of colorectal, gastric, and hepatocellular carcinomas.

Keywords

WTX Mutation Colorectal carcinomas Gastric carcinomas Hepatocellular carcinomas 

Notes

Acknowledgments

This work was supported by a grant from the Korea Healthcare Technology R&D Project, Ministry of Health & Welfare, Republic of Korea (A080083).

References

  1. 1.
    Rivera MN, Kim WJ, Wells J, et al. An X chromosome gene, WTX, is commonly inactivated in Wilms’ tumor. Science. 2007;315:642–645. doi: 10.1126/science.1137509.PubMedCrossRefGoogle Scholar
  2. 2.
    Major MB, Camp ND, Berndt JD, et al. Wilms’ tumor suppressor WTX negatively regulates WNT/beta-catenin signaling. Science. 2007;316:1043–1046. doi: 10.1126/science/1141515.PubMedCrossRefGoogle Scholar
  3. 3.
    Koesters R, Ridder R, Kopp-Schneider A, et al. Mutational activation of the beta-catenin proto-oncogene is a common event in the development of Wilms’ tumors. Cancer Res. 1999;59:3880–3882.PubMedGoogle Scholar
  4. 4.
    Koesters R, Niggli F, von Knebel Doeberitz M, Stallmach T. Nuclear accumulation of beta-catenin protein in Wilms’ tumours. J Pathol. 2003;199:68–76. doi: 10.1002/path.1248.PubMedCrossRefGoogle Scholar
  5. 5.
    Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006;127:469–480. doi: 10.1016/j.cell.2006.10.018.PubMedCrossRefGoogle Scholar
  6. 6.
    Van der Flier LG, Sabates-Bellver J, Oving I, et al. The intestinal Wnt/TCF signature. Gastroenterology. 2007;132:628–632. doi: 10.1053/j.gastro.2006.08.039.PubMedCrossRefGoogle Scholar
  7. 7.
    de La Coste A, Romagnolo B, Billuart P, et al. Somatic mutations of the beta-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc Natl Acad Sci USA. 1998;95:8847–8851. doi: 10.1073/pnas.95.15.8847.PubMedCrossRefGoogle Scholar
  8. 8.
    Lee SH, Shin MS, Park WS, et al. Alterations of Fas (Apo-1/CD95) gene in non-small cell lung cancer. Oncogene. 1999;18:3754–3760. doi: 10.1038/sj.onc.1202769.PubMedCrossRefGoogle Scholar
  9. 9.
    Kim HS, Lee JW, Soung YH, et al. Inactivating mutations of caspase-8 gene in colorectal carcinomas. Gastroenterology. 2003;125:708–715. doi: 10.1016/S0016-5085(03)01059-X.PubMedCrossRefGoogle Scholar
  10. 10.
    Boland CR, Thibodeau SN, Hamilton SR, et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998;58:5248–5257.PubMedGoogle Scholar
  11. 11.
    Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70. doi: 10.1016/S0092-8674(00)81683-9.PubMedCrossRefGoogle Scholar
  12. 12.
    Downward J. Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer. 2003;3:11–22. doi: 10.1038/nrc969.PubMedCrossRefGoogle Scholar
  13. 13.
    Levine AJ. p53, the cellular gatekeeper for growth and division. Cell. 1997;88:323–331. doi: 10.1016/S0092-8674(00)81871-1.PubMedCrossRefGoogle Scholar
  14. 14.
    Paez JG, Jänne PA, Lee JC, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004;304:1497–1500. doi: 10.1126/science.1099314.PubMedCrossRefGoogle Scholar
  15. 15.
    Kralovics R, Passamonti F, Buser AS, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352:1779–1790. doi: 10.1056/NEJMoa051113.PubMedCrossRefGoogle Scholar
  16. 16.
    Lee JW, Soung YH, Kim SY, et al. Mutational analysis of MYC in common epithelial cancers and acute leukemias. APMIS. 2006;114:436–439. doi: 10.1111/j.1600-0463.2006.apm_383.x.PubMedCrossRefGoogle Scholar
  17. 17.
    Jeong EG, Lee SH, Yoo NJ, Lee SH. Absence of nucleophosmin 1 (NPM1) gene mutations in common solid cancers. APMIS. 2007;115:341–346. doi: 10.1111/j.1600-0463.2007.apm_592.x.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Pathology, College of MedicineThe Catholic University of KoreaSeoulKorea

Personalised recommendations