Digestive Diseases and Sciences

, Volume 54, Issue 3, pp 471–480 | Cite as

On the Use of Herbal Medicines in Management of Inflammatory Bowel Diseases: A Systematic Review of Animal and Human Studies

  • Roja Rahimi
  • Shilan Mozaffari
  • Mohammad AbdollahiEmail author


Because of potential adverse events and lack of effectiveness of standard therapies, the use of complementary and alternative medicines (CAM), particularly of herbal therapies, for inflammatory bowel disease (IBD) is increasing. Results from the use of herbal therapies for managing IBD are promising, and no serious adverse events have been reported from them. Herbal therapies show their benefit in managing IBD by different mechanisms such as immune system regulation, antioxidant activity, inhibition of leukotriene B4, inhibition of nuclear factor-kappa B (NF-κB), and antiplatelet activity. In this paper, all reported herbal therapies established in animal IBD models or used for managing human IBD are systematically reviewed and their possible mechanisms of action discussed. Conducting clinical trials with high quality and validity (randomized, double blinded, controlled, on a large number of patients) to obtain more conclusive results about the use of herbal therapies in IBD is recommended.


Inflammatory bowel disease Herbal therapies Mechanisms 


  1. 1.
    Rezaie A, Parker RD, Abdollahi M (2007) Oxidative stress and pathogenesis of inflammatory bowel disease: an epiphenomenon or the cause? Dig Dis Sci 52:2015–2021. doi: 10.1007/s10620-006-9622-2 PubMedCrossRefGoogle Scholar
  2. 2.
    Trallori G, Palli D, Saieva C, Bardazzi G, Bonanomi AG, d’Albasio G et al (1996) A population-based study of inflammatory bowel disease in Florence over 15 years (1978–1992). Scand J Gastroenterol 31:892–899. doi: 10.3109/00365529609051998 PubMedCrossRefGoogle Scholar
  3. 3.
    Rahimi R, Nikfar S, Larijani B, Abdollahi M (2005) A review on the role of antioxidants in the management of diabetes and its complications. Biomed Pharmacother 59:365–373. doi: 10.1016/j.biopha.2005.07.002 PubMedCrossRefGoogle Scholar
  4. 4.
    Treasure J (2005) Herbal medicine and cancer: an introductory overview. Semin Oncol Nurs 21:177–183. doi: 10.1016/j.soncn.2005.04.006 PubMedCrossRefGoogle Scholar
  5. 5.
    Stickel F, Schuppan D (2007) Herbal medicine in the treatment of liver diseases. Dig Liver Dis 39:293–304. doi: 10.1016/j.dld.2006.11.004 PubMedCrossRefGoogle Scholar
  6. 6.
    Salari P, Rezaie A, Larijani B, Abdollahi M (2008) A systematic review of the impact of n-3 fatty acids in bone health and osteoporosis. Med Sci Monit 14:RA37–RA44PubMedGoogle Scholar
  7. 7.
    Langmead L, Rampton DS (2006) Review article: complementary and alternative therapies for inflammatory bowel disease. Aliment Pharmacol Ther 23:341–349. doi: 10.1111/j.1365-2036.2006.02761.x PubMedCrossRefGoogle Scholar
  8. 8.
    Bensoussan M, Jovenin N, Garcia B, Vandromme L, Jolly D, Bouché O et al (2006) Complementary and alternative medicine use by patients with inflammatory bowel disease: results from a postal survey. Gastroenterol Clin Biol 30:14–23. doi: 10.1016/S0399-8320(06)73072-X PubMedGoogle Scholar
  9. 9.
    Langhorst J, Anthonisen IB, Steder-Neukamm U, Lüdtke R, Spahn G, Michalsen A et al (2005) Amount of systemic steroid medication is a strong predictor for the use of complementary and alternative medicine in patients with inflammatory bowel disease: results from a German national survey. Inflamm Bowel Dis 11:287–295. doi: 10.1097/01.MIB.0000160771.71328.6c PubMedCrossRefGoogle Scholar
  10. 10.
    Hilsden RJ, Verhoef MJ, Best A, Pocobelli G (2003) Complementary and alternative medicine use by Canadian patients with inflammatory bowel disease: results from a national survey. Am J Gastroenterol 98:1563–1568. doi: 10.1111/j.1572-0241.2003.07519.x PubMedCrossRefGoogle Scholar
  11. 11.
    Day AS, Whitten KE, Bohane TD (2004) Use of complementary and alternative medicines by children and adolescents with inflammatory bowel disease. J Paediatr Child Health 40:681–684. doi: 10.1111/j.1440-1754.2004.00510.x PubMedCrossRefGoogle Scholar
  12. 12.
    Kaplan M, Mutlu EA, Benson M, Fields JZ, Banan A, Keshavarzian A (2007) Use of herbal preparations in the treatment of oxidant-mediated inflammatory disorders. Complement Ther Med 15:207–216. doi: 10.1016/j.ctim.2006.06.005 PubMedCrossRefGoogle Scholar
  13. 13.
    Kucharzik T, Maaser C, Lügering A, Kagnoff M, Mayer L, Targan S et al (2006) Recent understanding of IBD pathogenesis: implications for future therapies. Inflamm Bowel Dis 12:1068–1083. doi: 10.1097/01.mib.0000235827.21778.d5 PubMedCrossRefGoogle Scholar
  14. 14.
    Brown SJ, Mayer L (2007) The immune response in inflammatory bowel disease. Am J Gastroenterol 102:2058–2069. doi: 10.1111/j.1572-0241.2007.01343.x PubMedCrossRefGoogle Scholar
  15. 15.
    Scaldaferri F, Fiocchi C (2007) Inflammatory bowel disease: progress and current concepts of etiopathogenesis. J Dig Dis 8:171–178. doi: 10.1111/j.1751-2980.2007.00310.x PubMedCrossRefGoogle Scholar
  16. 16.
    Elsässer-Beile U, von Kleist S, Gerlach S, Gallati H, Mönting JS (1994) Cytokine production in whole blood cell cultures of patients with Crohn’s disease and ulcerative colitis. J Clin Lab Anal 8:447–451. doi: 10.1002/jcla.1860080618 PubMedCrossRefGoogle Scholar
  17. 17.
    Marano CW, Lewis SA, Garulacan AP, Soler LA, Mullin JM (1998) Tumor necrosis factor-α increases sodium and chloride conductance across the tight junction of CACO-2 BBE, a human intestinal epithelial cell line. J Membr Biol 161:263–274. doi: 10.1007/s002329900333 PubMedCrossRefGoogle Scholar
  18. 18.
    Rahimi R, Nikfar S, Abdollahi M (2007) Meta-analysis technique confirms the effectiveness of anti-TNF-alpha in the management of active ulcerative colitis when administered in combination with corticosteroids. Med Sci Monit 13:PI13–PI18PubMedGoogle Scholar
  19. 19.
    Rahimi R, Nikfar S, Abdollahi M (2007) Do anti-tumor necrosis factors induce response and remission in patients with acute refractory Crohn’s disease? A systematic meta-analysis of controlled clinical trials. Biomed Pharmacother 61:75–80. doi: 10.1016/j.biopha.2006.06.022 PubMedCrossRefGoogle Scholar
  20. 20.
    Rezaie A, Taghavi Bayat B, Abdollahi M (2005) Biologic management of fistulizing Crohn’s disease. Int J Pharmacol 1:17–24Google Scholar
  21. 21.
    Zhang M, Deng CS, Zheng JJ, Xia J (2006) Curcumin regulated shift from Th1 to Th2 in trinitrobenzene sulphonic acid-induced chronic colitis. Acta Pharmacol Sin 27:1071–1077. doi: 10.1111/j.1745-7254.2006.00322.x PubMedCrossRefGoogle Scholar
  22. 22.
    Jiang H, Deng CS, Zhang M, Xia J (2006) Curcumin-attenuated trinitrobenzene sulphonic acid induces chronic colitis by inhibiting expression of cyclooxygenase-2. World J Gastroenterol 12:3848–3853PubMedGoogle Scholar
  23. 23.
    Jian YT, Mai GF, Wang JD, Zhang YL, Luo RC, Fang YX (2005) Preventive and therapeutic effects of NF-kappaB inhibitor curcumin in rats colitis induced by trinitrobenzene sulfonic acid. World J Gastroenterol 11:1747–1752PubMedGoogle Scholar
  24. 24.
    Jian YT, Wang JD, Mai GF, Zhang YL, Lai ZS (2004) Modulation of intestinal mucosal inflammatory factors by curcumin in rats with colitis. Di Yi Jun Yi Da Xue Xue Bao 24:1353–1358PubMedGoogle Scholar
  25. 25.
    Sugimoto K, Hanai H, Tozawa K, Aoshi T, Uchijima M, Nagata T et al (2002) Curcumin prevents and ameliorates trinitrobenzene sulfonic acid-induced colitis in mice. Gastroenterology 123:1912–1922. doi: 10.1053/gast.2002.37050 PubMedCrossRefGoogle Scholar
  26. 26.
    Ren J, Tao Q, Wang X, Wang Z, Li J (2007) Efficacy of T2 in active Crohn’s disease: a prospective study report. Dig Dis Sci 52:1790–1797. doi: 10.1007/s10620-007-9747-y PubMedCrossRefGoogle Scholar
  27. 27.
    Kaliora AC, Stathopoulou MG, Triantafillidis JK, Dedoussis GV, Andrikopoulos NK (2007) Chios mastic treatment of patients with active Crohn’s disease. World J Gastroenterol 13:748–753. doi: 10.3748/wjg.13.6031 PubMedCrossRefGoogle Scholar
  28. 28.
    Wang X, Zhao L, Han T, Chen S, Wang J (2008) Protective effects of 2, 3, 5, 4′-tetrahydroxystilbene-2-O-beta-d-glucoside, an active component of Polygonum multiflorum Thunb, on experimental colitis in mice. Eur J Pharmacol 578:339–348. doi: 10.1016/j.ejphar.2007.09.013 PubMedCrossRefGoogle Scholar
  29. 29.
    Nakhai LA, Mohammadirad A, Yasa N, Minaie B, Nikfar S, Ghazanfari G et al (2007) Benefits of Zataria multiflora Boiss in experimental model of mouse inflammatory bowel disease. Evid Based Complement Alternat Med 4:43–50. doi: 10.1093/ecam/nel051 PubMedCrossRefGoogle Scholar
  30. 30.
    Hausmann M, Obermeier F, Paper DH, Balan K, Dunger N, Menzel K et al (2007) In vivo treatment with the herbal phenylethanoid acetonide ameliorates intestinal inflammation in dextran sulphate sodium-induced colitis. Clin Exp Immunol 148:373–381PubMedCrossRefGoogle Scholar
  31. 31.
    Deguchi Y, Andoh A, Inatomi O, Yagi Y, Bamba S, Araki Y et al (2007) Curcumin prevents the development of dextran sulfate sodium (DSS)-induced experimental colitis. Dig Dis Sci 52:2993–2998. doi: 10.1007/s10620-006-9138-9 PubMedCrossRefGoogle Scholar
  32. 32.
    Camacho-Barquero L, Villegas I, Sánchez-Calvo JM, Talero E, Sánchez-Fidalgo S, Motilva V et al (2007) Curcumin, a Curcuma longa constituent, acts on MAPK p38 pathway modulating COX-2 and iNOS expression in chronic experimental colitis. Int Immunopharmacol 7:333–342. doi: 10.1016/j.intimp. 2006.11.006 PubMedCrossRefGoogle Scholar
  33. 33.
    Ghafari H, Yasa N, Mohammadirad A, Dehghan G, Zamani MJ, Nikfar S et al (2006) Protection by Ziziphora clinopoides of acetic acid-induced toxic bowel inflammation through reduction of cellular lipid peroxidation and myeloperoxidase activity. Hum Exp Toxicol 25:325–332. doi: 10.1191/0960327105ht626oa PubMedCrossRefGoogle Scholar
  34. 34.
    Ghazanfari G, Minaie B, Yasa N, Nakhai L, Mohammadirad A, Nikfar S et al (2006) Biochemical and histopathological evidences for beneficial effects of Satureja Khuzestanica Jamzad essential oil on the mouse model of inflammatory bowel diseases. Toxicol Mech Methods 16:365–372. doi: 10.1080/15376520600620125 CrossRefPubMedGoogle Scholar
  35. 35.
    Zhou YH, Yu JP, Liu YF, Teng XJ, Ming M, Lv P et al (2006) Effects of Ginkgo biloba extract on inflammatory mediators (SOD, MDA, TNF-alpha, NF-kappaBp65, IL-6) in TNBS-induced colitis in rats. Mediators Inflamm 92642:2006Google Scholar
  36. 36.
    Zhang M, Deng C, Zheng J, Xia J, Sheng D (2006) Curcumin inhibits trinitrobenzene sulphonic acid-induced colitis in rats by activation of peroxisome proliferator-activated receptor gamma. Int Immunopharmacol 6:1233–1242. doi: 10.1016/j.intimp. 2006.02.013 PubMedCrossRefGoogle Scholar
  37. 37.
    Mustafa A, El-Medany A, Hagar HH, El-Medany G (2006) Ginkgo biloba attenuates mucosal damage in a rat model of ulcerative colitis. Pharmacol Res 53:324–330. doi: 10.1016/j.phrs.2005.12.010 PubMedCrossRefGoogle Scholar
  38. 38.
    Oh PS, Lim KT (2006) Plant originated glycoprotein has anti-oxidative and anti-inflammatory effects on dextran sulfate sodium-induced colitis in mouse. J Biomed Sci 13:549–560. doi: 10.1007/s11373-006-9083-9 PubMedCrossRefGoogle Scholar
  39. 39.
    Cheon JH, Kim JS, Kim JM, Kim N, Jung HC, Song IS (2006) Plant sterol guggulsterone inhibits nuclear factor-kappaB signaling in intestinal epithelial cells by blocking IkappaB kinase and ameliorates acute murine colitis. Inflamm Bowel Dis 12:1152–1161. doi: 10.1097/01.mib.0000235830.94057.c6 PubMedCrossRefGoogle Scholar
  40. 40.
    Ukil A, Maity S, Das PK (2006) Protection from experimental colitis by theaflavin-3, 3′-digallate correlates with inhibition of IKK and NF-kappaB activation. Br J Pharmacol 149:121–131. doi: 10.1038/sj.bjp. 0706847 PubMedCrossRefGoogle Scholar
  41. 41.
    Anthoni C, Laukoetter MG, Rijcken E, Vowinkel T, Mennigen R, Müller S et al (2006) Mechanisms underlying the anti-inflammatory actions of boswellic acid derivatives in experimental colitis. Am J Physiol Gastrointest Liver Physiol 290:G1131–G1137. doi: 10.1152/ajpgi.00562.2005 PubMedCrossRefGoogle Scholar
  42. 42.
    Ko JK, Cho CH (2005) The diverse actions of nicotine and different extracted fractions from tobacco smoke against hapten-induced colitis in rats. Toxicol Sci 87:285–295. doi: 10.1093/toxsci/kfi238 PubMedCrossRefGoogle Scholar
  43. 43.
    Kiela PR, Midura AJ, Kuscuoglu N, Jolad SD, Sólyom AM, Besselsen DG et al (2005) Effects of Boswellia serrata in mouse models of chemically induced colitis. Am J Physiol Gastrointest Liver Physiol 288:G798–G808. doi: 10.1152/ajpgi.00433.2004 PubMedCrossRefGoogle Scholar
  44. 44.
    Kim SW, Choi SC, Choi EY, Kim KS, Oh JM, Lee HJ et al (2004) Catalposide, a compound isolated from Catalpa ovata, attenuates induction of intestinal epithelial proinflammatory gene expression and reduces the severity of trinitrobenzene sulfonic acid-induced colitis in mice. Inflamm Bowel Dis 10:564–572. doi: 10.1097/00054725-200409000-00010 PubMedCrossRefGoogle Scholar
  45. 45.
    Murakami A, Hayashi R, Tanaka T, Kwon KH, Ohigashi H, Safitri R (2003) Suppression of dextran sodium sulfate-induced colitis in mice by zerumbone, a subtropical ginger sesquiterpene, and nimesulide: separately and in combination. Biochem Pharmacol 66:1253–1261. doi: 10.1016/S0006-2952(03)00446-5 PubMedCrossRefGoogle Scholar
  46. 46.
    Maity S, Ukil A, Karmakar S, Datta N, Chaudhuri T, Vedasiromoni JR et al (2003) Thearubigin, the major polyphenol of black tea, ameliorates mucosal injury in trinitrobenzene sulfonic acid-induced colitis. Eur J Pharmacol 30(470):103–112. doi: 10.1016/S0014-2999(03)01760-6 CrossRefGoogle Scholar
  47. 47.
    Ukil A, Maity S, Karmakar S, Datta N, Vedasiromoni JR, Das PK (2003) Curcumin, the major component of food flavour turmeric, reduces mucosal injury in trinitrobenzene sulphonic acid-induced colitis. Br J Pharmacol 139:209–218. doi: 10.1038/sj.bjp. 0705241 PubMedCrossRefGoogle Scholar
  48. 48.
    Micallef MJ, Iwaki K, Ishihara T, Ushio S, Aga M, Kunikata T et al (2002) The natural plant product tryptanthrin ameliorates dextran sodium sulfate-induced colitis in mice. Int Immunopharmacol 2:565–578. doi: 10.1016/S1567-5769(01)00206-5 PubMedCrossRefGoogle Scholar
  49. 49.
    Krieglstein CF, Anthoni C, Rijcken EJ, Laukötter M, Spiegel HU, Boden SE et al (2001) Acetyl-11-keto-beta-boswellic acid, a constituent of a herbal medicine from Boswellia serrata resin, attenuates experimental ileitis. Int J Colorectal Dis 16:88–95. doi: 10.1007/s003840100292 PubMedCrossRefGoogle Scholar
  50. 50.
    Omer B, Krebs S, Omer H, Noor TO (2007) Steroid-sparing effect of wormwood (Artemisia absinthium) in Crohn’s disease: a double-blind placebo-controlled study. Phytomedicine 14:87–95. doi: 10.1016/j.phymed.2007.01.001 PubMedCrossRefGoogle Scholar
  51. 51.
    Langmead L, Feakins RM, Goldthorpe S, Holt H, Tsironi E, De Silva A et al (2004) Randomized, double-blind, placebo-controlled trial of oral aloe vera gel for active ulcerative colitis. Aliment Pharmacol Ther 19:739–747. doi: 10.1111/j.1365-2036.2004.01902.x PubMedCrossRefGoogle Scholar
  52. 52.
    Dong WG, Liu SP, Zhu HH, Luo HS, Yu JP (2004) Abnormal function of platelets and role of Angelica sinensis in patients with ulcerative colitis. World J Gastroenterol 10:606–609PubMedGoogle Scholar
  53. 53.
    Ben-Arye E, Goldin E, Wengrower D, Stamper A, Kohn R, Berry E (2002) Wheat grass juice in the treatment of active distal ulcerative colitis: a randomized double-blind placebo-controlled trial. Scand J Gastroenterol 37:444–449. doi: 10.1080/003655202317316088 PubMedCrossRefGoogle Scholar
  54. 54.
    Gupta I, Parihar A, Malhotra P, Gupta S, Lüdtke R, Safayhi H et al (2001) Effects of gum resin of Boswellia serrata in patients with chronic colitis. Planta Med 67:391–395. doi: 10.1055/s-2001-15802 PubMedCrossRefGoogle Scholar
  55. 55.
    Gerhardt H, Seifert F, Buvari P, Vogelsang H, Repges R (2001) Therapy of active Crohn disease with Boswellia serrata extract H 15. Z Gastroenterol 39(1):11–17. doi: 10.1055/s-2001-10708 PubMedCrossRefGoogle Scholar
  56. 56.
    Fernández-Bañares F, Hinojosa J, Sánchez-Lombraña JL, Navarro E, Martínez-Salmerón JF, García-Pugés A et al (1999) Randomized clinical trial of Plantago ovata seeds (dietary fiber) as compared with mesalamine in maintaining remission in ulcerative colitis. Spanish group for the study of Crohn’s disease and ulcerative colitis (GETECCU. Am J Gastroenterol 94:427–433PubMedGoogle Scholar
  57. 57.
    Gupta I, Parihar A, Malhotra P, Singh GB, Lüdtke R, Safayhi H et al (1997) Effects of Boswellia serrata gum resin in patients with ulcerative colitis. Eur J Med Res 2(1):37–43PubMedGoogle Scholar
  58. 58.
    Greenfield SM, Green AT, Teare JP, Jenkins AP, Punchard NA, Ainley CC et al (1993) A randomized controlled study of evening primrose oil and fish oil in ulcerative colitis. Aliment Pharmacol Ther 7:159–166PubMedGoogle Scholar
  59. 59.
    Rezaie A, Ghorbani F, Eshghtork A, Zamani MJ, Dehghan G, Taghavi B et al (2006) Alterations in salivary antioxidants, nitric oxide, and transforming growth factor-beta 1 in relation to disease activity in Crohn’s disease patients. Ann N Y Acad Sci 1091:110–122. doi: 10.1196/annals.1378.060 PubMedCrossRefGoogle Scholar
  60. 60.
    Jahanshahi G, Motavasel V, Rezaie A, Hashtroudi AA, Daryani NE, Abdollahi M (2004) Alterations in antioxidant power and levels of epidermal growth factor and nitric oxide in saliva of patients with inflammatory bowel diseases. Dig Dis Sci 49:1752–1757. doi: 10.1007/s10620-004-9564-5 PubMedCrossRefGoogle Scholar
  61. 61.
    Liu L, Wang ZP, Xu CT, Pan BR, Mei QB, Long Y et al (2003) Effects of Rheum tanguticum polysaccharide on TNBS-induced colitis and CD4+T cells in rats. World J Gastroenterol 9:2284–2288PubMedGoogle Scholar
  62. 62.
    Liu L, Mei QB, Zhou SY, Han FH, Long Y, Liu JY et al (2003) Effects of tanguticum maxim polysaccharide on ulcerative colitis induced by TNBS in rats. Zhongguo Zhong Yao Za Zhi 28:246–249PubMedGoogle Scholar
  63. 63.
    Ford-Hutchinson AW, Evans JF (1986) Leukotriene B4: biological properties and regulation of biosynthesis. In: Piper PJ (ed) Leukotrienes: their biological significance. Raven Press, New York, pp 141–150Google Scholar
  64. 64.
    Sharon P, Stenson WF (1984) Enhanced synthesis of leukotriene B4 by colonic mucosa in inflammatory bowel disease. Gastroenterology 86:453–460PubMedGoogle Scholar
  65. 65.
    Kruis W (2004) Review article: antibiotics and probiotics in inflammatory bowel disease. Aliment Pharmacol Ther 20:75–78. doi: 10.1111/j.1365-2036.2004.02051.x PubMedCrossRefGoogle Scholar
  66. 66.
    Sartor RB (2003) Targeting enteric bacteria in treatment of inflammatory bowel diseases: why, how, and when. Curr Opin Gastroenterol. 19:358–365PubMedCrossRefGoogle Scholar
  67. 67.
    Swidsinski A, Ladhoff A, Pernthaler A, Swidsinski S, Loening-Baucke V, Ortner M et al (2002) Mucosal flora in inflammatory bowel disease. Gastroenterology 122:44–54. doi: 10.1053/gast.2002.30294 PubMedCrossRefGoogle Scholar
  68. 68.
    Rahimi R, Nikfar S, Rezaie A, Abdollahi M (2006) A meta-analysis of broad-spectrum antibiotic therapy in patients with active Crohn’s disease. Clin Ther 28:1983–1988. doi: 10.1016/j.clinthera.2006.12.012 PubMedCrossRefGoogle Scholar
  69. 69.
    Rahimi R, Nikfar S, Rezaie A, Abdollahi M (2007) A meta-analysis of antibiotic therapy for active ulcerative colitis. Dig Dis Sci 52:2920–2925. doi: 10.1007/s10620-007-9760-1 PubMedCrossRefGoogle Scholar
  70. 70.
    Kumar A, Takada Y, Boriek AM, Aggarwal BB (2004) Nuclear factor-kappaB: its role in health and disease. J Mol Med 82:434–448. doi: 10.1007/s00109-004-0555-y PubMedCrossRefGoogle Scholar
  71. 71.
    Egan LJ, Toruner M (2006) NF-kappaB signaling: pros and cons of altering NF-kappaB as a therapeutic approach. Ann N Y Acad Sci 1072:114–122. doi: 10.1196/annals.1326.009 PubMedCrossRefGoogle Scholar
  72. 72.
    Schreiber S, Nikolaus S, Hampe J (1998) Activation of nuclear factor kappa B inflammatory bowel disease. Gut 42:477–484PubMedCrossRefGoogle Scholar
  73. 73.
    Andresen L, Jørgensen VL, Perner A, Hansen A, Eugen-Olsen J, Rask-Madsen J (2005) Activation of nuclear factor kappaB in colonic mucosa from patients with collagenous and ulcerative colitis. Gut 54:503–509. doi: 10.1136/gut.2003.034165 PubMedCrossRefGoogle Scholar
  74. 74.
    Yamamoto Y, Gaynor RB (2004) IkappaB kinases: key regulators of the NF-kappaB pathway. Trends Biochem Sci 29:72–79. doi: 10.1016/j.tibs.2003.12.003 PubMedCrossRefGoogle Scholar
  75. 75.
    Martín MC, Martinez A, Mendoza JL, Taxonera C, Díaz-Rubio M, Fernández-Arquero M et al (2007) Influence of the inducible nitric oxide synthase gene (NOS2A) on inflammatory bowel disease susceptibility. Immunogenetics 59:833–837. doi: 10.1007/s00251-007-0255-1 PubMedCrossRefGoogle Scholar
  76. 76.
    Lundberg JO, Hellström PM, Lundberg JM, Alving K (1994) Greatly increased luminal nitric oxide in ulcerative colitis. Lancet 344:1673–1674. doi: 10.1016/S0140-6736(94)90460-X PubMedCrossRefGoogle Scholar
  77. 77.
    Rezaie A, Khalaj S, Shabihkhani M, Nikfar S, Zamani MJ, Mohammadirad A et al (2007) Study on the correlations among disease activity index and salivary transforming growth factor-beta 1 and nitric oxide in ulcerative colitis patients. Ann N Y Acad Sci 1095:305–314. doi: 10.1196/annals.1397.034 PubMedCrossRefGoogle Scholar
  78. 78.
    Mahadevan U, Loftus EV Jr, Tremaine WJ, Sandborn WJ (2002) Safety of selective cyclooxygenase-2 inhibitors in inflammatory bowel disease. Am J Gastroenterol 97:910–914. doi: 10.1111/j.1572-0241.2002.05608.x PubMedCrossRefGoogle Scholar
  79. 79.
    Miedany Y, Youssef S, Ahmed I, El Gaafary M (2006) The gastrointestinal safety and effect on disease activity of etoricoxib, a selective cox-2 inhibitor in inflammatory bowel diseases. Am J Gastroenterol 101:311–317. doi: 10.1111/j.1572-0241.2006.00384.x PubMedCrossRefGoogle Scholar
  80. 80.
    Talstad I, Rootwelt K, Gjone E (1973) Thrombocytosis in ulcerative colitis and Crohn’s disease. Scand J Gastroenterol 8:135–138PubMedGoogle Scholar
  81. 81.
    Lake AM, Stauffer JQ, Stuart MJ (1978) Hemostatic alterations in inflammatory bowel disease: response to therapy. Am J Dig Dis 23:897–902. doi: 10.1007/BF01072463 PubMedCrossRefGoogle Scholar
  82. 82.
    Collins CE, Rampton DS (1997) Review article: platelets in inflammatory bowel disease—pathogenetic role and therapeutic implications. Aliment Pharmacol Ther 11:237–247. doi: 10.1046/j.1365-2036.1997.153328000.x PubMedCrossRefGoogle Scholar
  83. 83.
    Pitchford SC (2007) Novel uses for anti-platelet agents as anti-inflammatory drugs. Br J Pharmacol 152:987–1002. doi: 10.1038/sj.bjp. 0707364 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Roja Rahimi
    • 1
  • Shilan Mozaffari
    • 1
  • Mohammad Abdollahi
    • 1
    Email author
  1. 1.Faculty of Pharmacy, and Pharmaceutical Sciences Research CenterTehran University of Medical Sciences (TUMS)TehranIran

Personalised recommendations