Digestive Diseases and Sciences

, Volume 53, Issue 8, pp 2106–2112 | Cite as

Effects of Hyperhomocysteinemia on Non-Adrenergic Non-Cholinergic Relaxation in Isolated Rat Duodenum

Original Paper

Abstract

The effect of hyperhomocysteinemia induced by pretreatment with methionine 12 weeks prior to the study on the responses induced by γ-aminobutyric acid (GABA), electrical field stimulation (EFS), and ATP have been evaluated in isolated rat duodenum. In the presence of adrenergic and cholinergic blockade, EFS (60 V, 1 ms, 1–3 Hz) induced frequency-dependent relaxations of the preparation. GABA and ATP also caused submaximal relaxation of the rat duodenum. The relaxations induced by GABA, EFS, and ATP were not significantly changed in duodenal tissues from hyperhomocysteinemic rats compared with control rats. GABA- and EFS-induced relaxations were inhibited by N-nitro-l-arginine methyl ester (L-NAME; 3 × 10−4 M) in both hyperhomocysteinemic and control rats. On the other hand, L-NAME incubation did not affect ATP-induced relaxation. These results suggest that hyperhomocysteinemia does not cause an important impairment on non-adrenergic non-cholinergic innervation of the rat duodenum.

Keywords

Hyperhomocysteinemia Duodenum Non-adrenergic non-cholinergic relaxation GABA Electrical field stimulation Nitric oxide 

References

  1. 1.
    de Bree A, Verschuren M, Kromhout D, Kluıjtmans AJ, Blom HJ (2002) Homocysteine determinants and the evidence to what extent homocysteine determines the risk of coronary heart disease. Pharmacol Rev 54:599–618PubMedCrossRefGoogle Scholar
  2. 2.
    Kang SS, Wong PWK, Malinow MR (1992) Hyperhomocyst(e)inemia as a risk factor for occlusive vascular disease. Ann Rev Nutr 12:279–298CrossRefGoogle Scholar
  3. 3.
    Perna AF, Castaldo P, Ingrosso D, De Santo NG (1999) Homocysteine, a new cardiovascular risk factor, is also a powerful uremic toxin. J Nephrol 12:230–240PubMedGoogle Scholar
  4. 4.
    Verklej-Hagoort A, Verlinde M, Ursem N (2006) Maternal hyperhomocysteine is a risk factor for congenital heart disease. BJOG 113:1412–1418Google Scholar
  5. 5.
    Parsons RB, Waring RH, Ramsden DB, Williams AC (1998) In vitro effect of the cysteine metabolites homocysteic acid, homocysteine and cysteic acid upon human neuronal cell lines. Neurotoxicology 19(4–5):599–603PubMedGoogle Scholar
  6. 6.
    Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D’Agostıno RB, Wılson PW, Wolf PA (2002) Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med 346:476–483PubMedCrossRefGoogle Scholar
  7. 7.
    Lentz SR, Sobey CG, Piegors DJ, Bhopatkar MY, Faraci FM, Malinow MR (1996) Vascular dysfunction in monkeys with diet-induced hyperhomocyst(e)inemia. J Clin Invest 98:24–29PubMedCrossRefGoogle Scholar
  8. 8.
    Ungvari Z, Pacher P, Rischak K, Szollar L, Koller A (1999) Dysfunction of nitric oxide mediation in isolated rat arterioles with methionine diet-induced hyperhomocysteinemia. Arterioscler Thromb Vasc Biol 19(8):1899–1904PubMedGoogle Scholar
  9. 9.
    Jones RWA, Jeremy JY, Koupparis A, Persad R, Shukla N (2005) Cavernosal dysfunction in a rabbit model of hyperhomocysteinemia. Br J Urol 95:125–130Google Scholar
  10. 10.
    Tasatargıl A, Sadan G, Golbası I, Karasu E, Turkay C (2004) Effects of short-term exposure to homocysteine on vascular responsiveness of human internal mammary artery. J Cardiovasc Pharmacol 43:692–697PubMedCrossRefGoogle Scholar
  11. 11.
    Tasatargıl A, Sadan G, Karasu E (2007) Homocysteine-induced changes in vascular reactivity of guinea-pig pulmonary arteries: role of the oxidative stress and poly (ADP-ribose) polymerase activation. Pulm Pharmacol Ther 20(3):265–272PubMedCrossRefGoogle Scholar
  12. 12.
    Tasatargıl A, Sadan G, Karasu E, Ozdem S (2006) Changes in atrium and thoracic aorta reactivity to adenosinergic and adrenergic agonists in experimental hyperhomocysteinemia. J Cardiovasc Pharmacol 47:673–679PubMedCrossRefGoogle Scholar
  13. 13.
    Glaskow I, Mattar K, Krantis A (1998) Rat gastroduodenal motility in vivo: involvement of NO and ATP in spontaneous motor activity. Gastrointest Liver Physiol 38:G889–G896Google Scholar
  14. 14.
    Manzini S, Maggi CA, Meli A (1986) Pharmacological evidence that at least two different non-adrenergic non-cholinergic inhibitory systems are present in the rat small intestine. Eur J Pharmacol 123:229–236PubMedCrossRefGoogle Scholar
  15. 15.
    Matharu MS, Hollingsworth M (1992) Purinoreceptors mediating relaxation and spasm in the rat gastric fundus. Br J Pharmacol 106:395–403PubMedGoogle Scholar
  16. 16.
    Matusak A, Bauer V (1986) Effect of desensitization induced by adenosine 5′-triphosphate, substance P, bradykinin, serotonin, GABA and endogenous noncholinergic–nonadrenergic transmitter in the guinea-pig ileum. Eur J Pharmacol 126:199–209PubMedCrossRefGoogle Scholar
  17. 17.
    Mercier-Parot L, Tuchmann-Duplessis H (1973) Abortifactent and teratogenic effect of suramin, a trypanocide. C R Seances Soc Biol Ses Filiales 167:1518–1522Google Scholar
  18. 18.
    Windscheif U, Pfaff O, Ziganshin AU, Hoyle CHV, Baumert HG, Mutschler E, Burnstock G, Lambrecht G (1995) Inhibitory action of PPADS on relaxant responses to adenine nucleotides or electrical field stimulation in guinea-pig taenia coli and rat doudenum. Br J Pharmacol 115:1509–1517PubMedGoogle Scholar
  19. 19.
    Duarte IDG, Lorezetti BB, Ferreira SH (1990) Acetylcholine induces peripheral analgesia by the release of nitric oxide. In: Moncada S, Higgs EA (eds) The nitric oxide from l-arginine: a biorgulatory system. Elsevier, Amsterdam, p 165Google Scholar
  20. 20.
    Rand JM (1992) Nitric oxide as a mediator of non-adrenergic, non-cholinergic neuro-effector transmission. Clin Exp Pharmacol Physiol 19:147–169PubMedCrossRefGoogle Scholar
  21. 21.
    Bredt DS, Hwang PM, Synder SH (1990) Localization of nitric oxide synthase indicating a neuronal role for nitric oxide. Nature 347:768–770PubMedCrossRefGoogle Scholar
  22. 22.
    Belai A, Schmidt HHHW, Hoyle CHV (1992) Colocalization of nitric oxide synthase and NADPH-diaphorase in the myenteric plexus of the rat gut. Neurosci Lett 143:60–64PubMedCrossRefGoogle Scholar
  23. 23.
    Martins SR, Bicudo R, Oliveira RB, Ballejo G (1993) Evidence for the partipicipation of the l-arginine–nitric oxide pathway in neurally induced relaxation of the isolated rat duodenum. Braz J Med Biol Res 26:1325–1335PubMedGoogle Scholar
  24. 24.
    Nichols K, Krantis A, Staines W (1992) Histochemical localization of nitric oxide-synthesizing neurons and vascular sides in the guinea-pig intestine. Neuroscience 51:791–799PubMedCrossRefGoogle Scholar
  25. 25.
    Nichols K, Staines W, Krantis A (1993) Nitric oxide synthase distribution in rat intestine: a histochemical analysis. Gastroenterology 105:1651–1661PubMedGoogle Scholar
  26. 26.
    Nichols K, Staines W, Wu-Y JY, Krantis A (1995) Immonupositive GABAergic neural sides display nitric oxide synthase-releated NADPH diaphorase activitiy in the human colon. J Auton Nerv Syst 50:253–262PubMedCrossRefGoogle Scholar
  27. 27.
    Jessen KR, Mirsky R, Densson ME, Burnstock G (1979) GABA may be a neurotransmitter in the vertebrate peripheral nervous system. Nature 281:71–74PubMedCrossRefGoogle Scholar
  28. 28.
    Maggi CA, Manzini S, Meli A (1984) Evidence that GABAA receptors mediate relaxation of rat duodenum by activating intramural nonadrenergic–noncholinergic neurons. J Auton Pharmacol 4:77–85PubMedCrossRefGoogle Scholar
  29. 29.
    Krantis A, Costa M, Furness JB, Orbach J (1980) γ-Aminobutyric acid stimulates intrinsic inhibitory and excitatory nerves in the guinea-pig intestine. Eur J Pharmacol 141:461–468CrossRefGoogle Scholar
  30. 30.
    Tonini M, Crema A, Frigo GM, Rizzi CA, Manzo L, Candura SM, Onori L (1989) An in vitro study of the relation between GABA receptor function and propulsive motility in the distal colon of the rabbit. Br J Pharmacol 98:1109–1118PubMedGoogle Scholar
  31. 31.
    Boeckxstaens GE, Pelckmans PA, Rampart M, Ruytjens IF, Verbeuren TJ, Herman AG, Van Maercke YM (1990) GABAA receptor mediated stimulation of non-adrenergic non-cholinergic neurons in the dog ileocolonic junction. Br J Pharmacol 101:460–464PubMedGoogle Scholar
  32. 32.
    Krantis A, Mattar K, Glasgow I (1998) Rat gastroduodenal motility in vivo: interaction of GABA and VIP in control of spontaneouys relaxations. Am J Physiol Gastrointest Liver Physiol 275:897–903Google Scholar
  33. 33.
    Gustafsson B, Delbro D (1993) Tonic inhibition of small intestinal motility by nitric oxide. J Auton Nerv Syst 44:179–187PubMedCrossRefGoogle Scholar
  34. 34.
    Kaputlu İ, Özdem S, Şadan G, Gökalp O (1999) Effects of diabetes on non-adrenergic, non-cholinergic relaxation induced by GABA and electrical stimulation in the rat isolated duodenum. Clin Exp Pharm Physiol 26:724–728CrossRefGoogle Scholar
  35. 35.
    Stampfer MJ, Malinow MR (1995) Can lowering homocysteine levels reduce cardiovascular risk? N Engl J Med 332:328–329PubMedCrossRefGoogle Scholar
  36. 36.
    Verhoef P, Kok FJ, Kruyssen DACM, Schouten EG, Witteman JCM, Grobbee DE, Ueland PM, Refsum H (1997) Plasma total homocysteine, B vitamins, of coronary atherosclerosis. Arterioscler Thromb Vasc Biol 17:989–995PubMedGoogle Scholar
  37. 37.
    De Bree A, Verschuren WM, Kromhout D, Kluijtmans LA, Blom HJ (2002) Homocysteine determinants and the evidence to what extent homocysteine determines the risk of coronary heart disease. Pharmacol Rev 54:599–618PubMedCrossRefGoogle Scholar
  38. 38.
    Boysen G, Brander T, Christensen H, Gideon R, Truelsen T (2003) Homocysteine and risk of recurrent stroke. Stroke 34:1258–1261PubMedCrossRefGoogle Scholar
  39. 39.
    Vollset SE, Refsum H, Tverdal A, Nygard O, Nordrehaug J, Tell GS, Ueland PM (2001) Plasma total homocysteine and cardiovascular and non-cardiovascular mortality: the Hordalans homocysteine study. Am J Clin Nutr 74:130–136PubMedGoogle Scholar
  40. 40.
    Malinow MR, Kang SS, Taylor LM, Wong PWK, Coull B, Inahara T, Mukerjee D, Sexton G, Upson B (1989) Prevalence of hyperhomocyteinemia in patients with peripheral arterial occlusive disease. Circulation 79:1180–1188PubMedGoogle Scholar
  41. 41.
    Clarke R, Daly L, Robinson K, Naughten E, Cahalane S, Fowler B, Graham I (1991) Hyperhomocysteinemia: an independent risk factor for vascular disease. N Engl J Med 313:709–715Google Scholar
  42. 42.
    Burnstock G, Campbell G, Rand MJ (1966) The inhibitory innervation of the taenia of the guinea-pig caecum. J Physiol Lond 182:504–526PubMedGoogle Scholar
  43. 43.
    Burnstock G, Campbell G, Bennett M, Holman ME (1963) Inhibition of the smooth muscle of the taenia coli. Nature 200:581–582PubMedCrossRefGoogle Scholar
  44. 44.
    Sanders KM, Ward SM (1992) Nitric oxide as a mediator of nonadrenergic noncholinergic neurotransmission. Am J Physiol 262:G379–G392PubMedGoogle Scholar
  45. 45.
    Takahashı T (2003) Pathophysiological significance of neuronal nitric oxide synthase in the gastrointestinal tract. J Gastroenterol 38:421–430PubMedCrossRefGoogle Scholar
  46. 46.
    Allescher HD, Lu S, Daniel EE, Classen M (1993) Nitric oxide as a putative nonadrenergic noncholinergic inhibitory neurotransmitter in the opossum sphincter of Oddi. Can J Physiol Pharmacol 71:525–530PubMedGoogle Scholar
  47. 47.
    Mourelle M, Guarner F, Moncada S, Malagelada JR (1993) The arginine/nitric oıxide pathway modulates sphincter of Oddi motor activity in guinea pigs and rabbits. Gastroenterology 105:1299–1305PubMedGoogle Scholar
  48. 48.
    Szilvassy Z, Nagy I, Szilvassy J, Jakab I, Csati S, Lonovics J (1996) Impaired nitrergic relaxation of the sphincter of Oddi of hyperlipidemic rabbits. Eur J Pharmacol 301:R17–R18PubMedCrossRefGoogle Scholar
  49. 49.
    Cattaneo M, Vecchi M, Zighetti ML, Saibeni S, Martinelli I, Omodei P, Mannucci PM, de Francis R (1998) High prevalence of hyperhomocysteinemia in patients with inflammatory bowel disease: a pathogenic link thromboembolic complications? Thromb Haemost 80:542–545PubMedGoogle Scholar
  50. 50.
    Oldenburg B, Fijnheer R, van der Griend R, vanBerge-Henegouwen GP, Koningsberger JC (2000) Homocysteine in inflammatory bowel disease: a risk factor for thromboembolic complications? Am J Gastroenterol 95:2825–2830PubMedCrossRefGoogle Scholar
  51. 51.
    Romagnoulo J, Fedorak RN, Dias VC, Bamforth F, Teltscher M (2001) Hyperhomocysteinemia and inflammatory bowel disease: prevalence and predictors in cross-sectional study. Am J Gastroenterol 96:2143–2149CrossRefGoogle Scholar
  52. 52.
    Koutroubakis LE, Dilaveraki E, Vlachonikolis IG, Vardas E, Vrentzos G, Ganotakis E (2000) Hyperhomocystenemia in Greek patients with inflammatory bowel disease. Dig Dis Sci 45:2347–2351PubMedCrossRefGoogle Scholar
  53. 53.
    Papa A, De-Stefano V, Danese S, Chiusolo P, Persichilli S, Casorelli I, Zappacosta B, Gıardina B, Gasbarrini A, Leone G, Gasbarrini G (2001) Hyperhomocysteinemia and prevalence of polymorphism of homocysteine metabolism-related enzymes in patients with inflammatory bowel disease. Am J Gastroenterol 96:2677–2682PubMedCrossRefGoogle Scholar
  54. 54.
    Kaputlu I, Sadan G (1996) Evidence that nitric oxide mediates non-adrenergic non-cholinergic relaxation induced by GABA and electrical stimulation in the rat isolated duodenum. J Auton Pharmacol 16:177–182PubMedCrossRefGoogle Scholar
  55. 55.
    Maggi CA, Manzini S, Mell A (1984) Evidence that GABAA receptors mediate relaxation of rat deoudenum by activating intramural nonadrenergic- noncholinergic neurons. J Auton Pharmacol 4:77–85PubMedCrossRefGoogle Scholar
  56. 56.
    Manzini S, Maggi CA, Mell A (1985) Further evidence for involvement of adenosine-5′-triphosphate in non-adrenergic non-cholinergic relaxation of the isolated rat duodenum. Eur J Pharmacol 86:9–17Google Scholar
  57. 57.
    Ozdem SS, Sadan G (1999) Impairment of GABA-mediated contractions of rat isolated ileum by experimental diabetes. Pharmacology 59:165–170PubMedCrossRefGoogle Scholar
  58. 58.
    Park KJ, Baker SA, Cho SY, Sanders KM, Koh DS (2005) Sulfur-containing amino acids block stretch-dependent K+ channels and nitrergic responses in the murine colon. Br J Pharmacol 144:1126–1137PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of PharmacologyAkdeniz University Medical FacultyAntalyaTurkey

Personalised recommendations