Digestive Diseases and Sciences

, Volume 53, Issue 11, pp 2851–2857 | Cite as

The Effect of Retinoic Acid and Deoxycholic Acid on the Differentiation of Primary Human Esophageal Keratinocytes

  • Gordon Cooke
  • Alfonso Blanco-Fernandez
  • John P. Seery
Original Paper


The mechanism linking gastroduodenal reflux disease to intestinal metaplasia in the esophagus (Barrett’s esophagus) has not been determined. Active conjugate metabolites of retinoic acid, in addition to bile acids, undergo an enterohepatic circulation in bile. Retinoic acid and bile acids are candidate mediators of keratinocyte transdifferentiation in Barrett’s esophagus. We studied the effects of retinoic acid on the differentiation of primary human esophageal keratinocytes cultured in vitro. Retinoic acid induces expression of a marker of intestinal differentiation, MUC2, in these cells. However, retinoic acid, alone or in combination with the hydrophobic bile acid, deoxycholic acid, does not affect esophageal keratinocyte squamous differentiation as assessed by involucrin expression and cellular morphology. The ability of retinoic acid to induce MUC2 expression may be relevant to the pathogenesis of Barrett’s esophagus. However, this does not result in suppression of squamous differentiation.


Retinoic acid Barrett’s esophagus Metaplasia Bile acids 



We thank Dr. Hugh Mulcahy for help in recruiting patients for this study and Dr. Fiona Watt and Mr. Simon Broad, CRUK, for help with the supply of several reagents. Dr. Gordon Cooke was supported by a grant from the Irish Lung Foundation.


  1. 1.
    Richter JE (2000–2001) Importance of bile reflux in Barrett’s esophagus. Dig Dis 18:208–216. doi: 10.1159/000051401 Google Scholar
  2. 2.
    Pera M, Brito MJ, Poulsom R, Riera E, Grande L, Hanby A, Wright NA (2000) Duodenal-content reflux esophagitis induces the development of glandular metaplasia, adenosquamous carcinoma in rats. Carcinogenesis 21:1587–1591. doi: 10.1093/carcin/21.8.1587 Google Scholar
  3. 3.
    Krishnadath KK (2007) Novel findings in the pathogenesis of esophageal columnar metaplasia of Barrett’s esophagus. Curr Opin Gastroenterol 23:440–445. doi: 10.1097/MOG.0b013e32814e6b4f Google Scholar
  4. 4.
    Barua AB, Sidell N (2004) Retinoyl beta-glucuronide: a biologically active interesting retinoid. J Nutr 134:286S-289S. PubMedGoogle Scholar
  5. 5.
    Baltes S, Nau H, Lampen A (2004) All-trans retinoic acid enhances differentiation and influences permeability of intestinal Caco-2 cells under serum-free conditions. Dev Growth Differ 46:503–514. doi: 10.1111/j.1440-169x.2004.00765.x
  6. 6.
    Poddar S, Hong K, Thacher S, Lotan R (1991) Suppression of type 1 transglutaminase, involucrin and keratin K1 in cultured human head and neck squamous carcinoma 1483 cells by retinoic acid. Int J Cancer 48:239–247. doi: 10.1002/ijc.2910480215 Google Scholar
  7. 7.
    Zimber A, Chedeville A, Abita JP, Barbu V, Gespach C (2000) Functional interactions between bile acids, all-trans retinoic acid, and 1,25-Dihydroxy-vitamin D3 on monocytic differentiation and myeloblastin gene down-regulation in HL60 and THP-1 human leukaemia cells. Cancer Res 60:672–678PubMedGoogle Scholar
  8. 8.
    Kazumori H, Ishihara S, Rumi MA, Kadowaki Y, Kinoshita Y (2006) Bile acids directly augment caudal related homeobox gene Cdx2 expression in oesophageal keratinocytes in Barrett’s epithelium. Gut 55:16–25. doi: 10.1136/gut.2005.066209 Google Scholar
  9. 9.
    Hu Y, Jones C, Gellersen O, Williams VA, Watson TJ, Peters JH (2007) Pathogenesis of Barrett esophagus: deoxycholic acid up-regulates goblet-specific gene MUC2 in concert with CDX2 in human esophageal cells. Arch Surg 142:540–544. doi: 10.1001/archsurg.142.6.540 Google Scholar
  10. 10.
    Chang CL, Lao-Sirieix P, Save V, De La Cueva Mendez G, Laskey R, Fitzgerald RC (2007) Retinoic acid-induced glandular differentiation of the esophagus. Gut 56:906–917. doi: 10.1136/gut.2006.097915
  11. 11.
    Seery JP, Watt FM (2000) Asymmetric stem-cell divisions define the architecture of human oesophageal epithelium. Curr Biol 10:1447–1450. doi: 10.1016/S0960-9822(00)00803-4 Google Scholar
  12. 12.
    Banks-Schlegel S, Green H (1981) Involucrin synthesis and tissue assembly by keratinocytes in normal and cultured human epithelia. J Cell Biol 90:732–737. doi: 10.1083/jcb.90.3.732 Google Scholar
  13. 13.
    Watt FM (1998) Cultivation of human epidermal keratinocytes with a 3T3 feeder layer. In: Celis JE (ed) Cell biology: a laboratory handbook, vol 1. Academic Press, New York, pp 113–118Google Scholar
  14. 14.
    Chantret I, Rodolosse A, Barbat A, Dussaulx E, Brot-Laroche E, Zweibaum A, Rousset M (1994) Differential expression of sucrase-isomaltase in clones isolated from early and late passages of the cell line Caco2: evidence for glucose-dependent negative regulation. J Cell Sci 107:213–225PubMedGoogle Scholar
  15. 15.
    Ishiquro K, Sartorelli AC (2004) Activation of transiently transfected reporter genes in 3T3 Swiss cells by the inducers of differentiation/apoptosis-dimethylsulfoxide, hexamethylene bisacetamide and trichostatin A. Eur J Biochem 271:2379–2390. doi: 10.1111/j.1432-1033.2004.04157.x
  16. 16.
    Ronkainen J, Aro P, Storskrubb T, Johansson SE, Lind T, Bolling-Sternevald E, Vieth M, Stolte M, Talley NJ, Agreus L (2005) Prevalence of Barrett’s esophagus in the general population: an endoscopic study. Gastroenterology 129:1825–1831. doi: 10.1053/j.gastro.2005.08.053 Google Scholar
  17. 17.
    Watt FM (1994) Suspension-induced terminal differentiation of keratinocytes. In: Leigh IM, Watt FM (eds) Keratinocyte methods. Cambridge University Press, Cambridge, UK, pp 113Google Scholar
  18. 18.
    Watt FM, Jordan PW, O’Neill C (1988) Cell shape controls terminal differentiation of human epidermal keratinocytes. Proc Natl Acad Sci USA 85:5576–5580. doi: 10.1073/pnas.85.15.5576
  19. 19.
    Murphy GF, Flynn TC, Rice RH, Pinkus GS (1984) Involucrin expression in normal and neoplastic human skin: a marker for keratinocyte differentiation. J Invest Dermatol 82:453–457. doi: 10.1111/1523-1747.ep12260945
  20. 20.
    Gandarillas A, Goldsmith LA, Gschmeissner S, Leigh IM, Watt FM (1999) Evidence that apoptosis and terminal differentiation of epidermal keratinocytes are distinct processes. Exp Dermatol 8:71–79. doi: 10.1111/j.1600-0625.1999.tb00350.x Google Scholar
  21. 21.
    Hudson DL, Weiland KL, Dooley TP, Simon M, Watt FM (1992) Characterisation of eight monoclonal antibodies to involucrin. Hybridoma 11:367–379. PubMedCrossRefGoogle Scholar
  22. 22.
    Jones PH, Watt FM (1993) Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell 73:713–724. doi: 10.1016/0092-8674(93)90251-K Google Scholar
  23. 23.
    Zile MH, Inhorn RC, DeLuca HF (1982) Metabolites of all-trans-retinoic acid in bile: Identification of all-trans- and 13-cis-retinoyl glucuronides. J Biol Chem 257:3537–3543. PubMedGoogle Scholar
  24. 24.
    Wang Z, Dolle P, Cardoso WV, Niederreither K (2006) Retinoic acid regulates morphogenesis and patterning of posterior foregut derinvatives. Dev Biol 297:433–445. doi: 10.1016/j.ydbio.2006.05.019 Google Scholar
  25. 25.
    Chiba H, Clifford J, Metzger D, Chambon P (1997) Distinct retinoid X receptor-retinoic acid receptor heterodimers are differentially involved in the control of expression of retinoid target genes in F9 embryonal carcinoma cells. Mol Cell Biol 17:3013–3020. PubMedGoogle Scholar
  26. 26.
    Houle M, Sylvestre JR, Lohnes D (2003) Retinoic acid regulates a subset of Cdx1 function in vivo. Development 130:6555–6567. doi: 10.1242/dev.00889 Google Scholar
  27. 27.
    Wong NACS, Wilding J, Bartlett S, Liu Y, Warren BF, Piris J, Maynard N, Marshall R, Bodmer WF (2005) Cdx1 is an important molecular mediator of Barrett’s metaplasia. Proc Natl Acad Sci USA 102:7565–7570. doi: 10.1073/pnas.0502031102 Google Scholar
  28. 28.
    Kim SW, Hong JS, Ryu SH, Chung WC, Yoon JH, Koo JS (2007) Regulation of mucin gene expression by CREB via a nonclassical retinoic acid signaling pathway. Mol Cell Biol 27:6933–6947. doi: 10.1128/MCB.02385-06 Google Scholar
  29. 29.
    Beck F, Chawengsaksophak K, Luckett J, Giblett S, Tucci J, Brown J, Poulsom R, Jeffery R, Wright NA (2003) A study of regional gut endoderm potency by analysis of Cdx2 null mutant chimaeric mice. Dev Biol 255:399-406. doi: 10.1016/S0012-1606(02)00096-9 Google Scholar
  30. 30.
    Pera M, Pera M, de Bolos C, Brito MJ, Palacin A, Grande L, Cardesa A, Poulsom R (2007) Duodenal-content reflux into the esophagus leads to expression of Cdx2 and MUC2 in areas of squamous epithelium in rats. J Gastrointest Surg 11:869–874. doi: 10.1007/s11605-007-0162-7 Google Scholar
  31. 31.
    Seery JP (2002) Stem cells of the oesophageal epithelium. J Cell Sci 115:1783–1789. PubMedGoogle Scholar
  32. 32.
    Gillen P, Keeling P, Byrne PJ, West AB, Hennessy TP (1988) Experimental columnar metaplasia in the canine oeosphagus. Br J Surg 75:113–115. doi: 10.1002/bjs.1800750208 Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Gordon Cooke
    • 1
  • Alfonso Blanco-Fernandez
    • 1
  • John P. Seery
    • 1
    • 2
  1. 1.UCD School of Medicine, UCD Conway Institute of Biomolecular and Biomedical ResearchDublinIreland
  2. 2.St Vincent’s University HospitalDublinIreland

Personalised recommendations