Digestive Diseases and Sciences

, Volume 53, Issue 7, pp 1801–1810 | Cite as

Akt1/protein Kinase Bα is Involved in Gastric Cancer Progression and Cell Proliferation

  • Zheyi Han
  • Kaichun Wu
  • Huiqin Shen
  • Chunying Li
  • Shuang Han
  • Liu Hong
  • Yongquan Shi
  • Na Liu
  • Changcun Guo
  • Yan Xue
  • Taidong Qiao
  • Daiming Fan
Original Paper

Abstract

Akt (also known as protein kinase B, PKB) is involved in a variety of biological processes, for example cell development, proliferation, and angiogenesis. Clinical studies in support of the idea that increased activity of Akt could contribute directly to gastric carcinogenesis are rare, however. In this study we discovered that phospho-Akt1 was overexpressed in human gastric cancers and its levels correlated with tumor differentiation and pTNM. Akt1 activation promoted cell survival, because the phosphatidylinositol 3-kinase(PI3K) inhibitor LY294002 inhibited Akt1 phosphorylation and inhibited cell growth, especially in cells with active Akt1. Dominant negative Akt inhibited proliferation of gastric cancer cells and induced G1 cell-cycle arrest whereas constitutively active Akt increased cell proliferation. We have therefore identified Akt1 as an active kinase that contributes to gastric cancer progression and promotes proliferation of gastric cancer cells.

Keywords

Akt1 Protein kinase Bα Gastric cancer Proliferation Cell cycle 

Notes

Acknowledgment

This work was supported by National Natural Sciences Foundation of China. (No. 30400530 and 30200121).

References

  1. 1.
    Vivanco CL (2002) The phosphatidylinositol 3-kinase-AKT pathway in human cancer. Nature Rev 2:489–501CrossRefGoogle Scholar
  2. 2.
    Cheng JQ, Lindsley CW, Cheng GZ, Yang H, Nicosia SV (2005) The Akt/PKB pathway: molecular target for cancer drug discovery. Oncogene 24:7482–7492PubMedCrossRefGoogle Scholar
  3. 3.
    Laine J, Kunstle G, Obata T, Noguchi M (2002) Differential regulation of Akt kinase isoforms by the members of the TCL1 oncogene family. J Biol Chem 227:3743–3751CrossRefGoogle Scholar
  4. 4.
    Staal SP (1987) Molecular cloning of akt oncogene and its human homologues AKT1 and AKT2: amplification of AKT1 in a primary adenocarcinoma. Proc Natl Acad Sci USA 84:5034–5037PubMedCrossRefGoogle Scholar
  5. 5.
    Bellacosa A, de Feo D, Godwin AK, Bell DW, Cheng JQ, Altomare M, Wan M, Dubeau L, Scambia G (1995) Molecular alterations of the AKT2 oncogene in ovarian and breast carcinomas. Int J Cancer 64:280–285PubMedCrossRefGoogle Scholar
  6. 6.
    Cheng JQ, Ruggeri B, Klein WM, Sonoda G, Altomare DA, Watson DK, Testa JR (1996) Amplification of AKT2 in human pancreatic cells and inhibition of AKT2 expression and tumorigenicity by antisense RNA. Proc Natl Acad Sci USA 93:3636–3641PubMedCrossRefGoogle Scholar
  7. 7.
    Mende I, Malstrom S, Tsichlis PN, Vogt PK, Aoki M (2001) Oncogenic transformation induced by membrane-targeted Akt2 and Akt3. Oncogene 20:4419–4423PubMedCrossRefGoogle Scholar
  8. 8.
    Malik SN, Brattain M, Ghosh PM, Troyer DA, Prihoda T, Bedolla R, Kreisberg JI (2002) Immunohistochemical demonstration of phospho-Akt in high Gleason grade prostate cancer. Clin Cancer Res 8:1168–1171PubMedGoogle Scholar
  9. 9.
    Li Y, Dowbenko D, Lasky LA (2002) AKT/PKB phosphorylation of p21Cip/WAF1 enhances protein stability of p21Cip/WAF1 and promotes cell survival. J Biol Chem 277:11352–11361PubMedCrossRefGoogle Scholar
  10. 10.
    Shin I, Yakes FM, Rojo F, Shin NY, Bakin AV, Baselga J, Arteaga CL (2002) PKB/Akt mediates cell-cycle progression by phosphorylation of p27(Kip1) at threonine 157 and modulation of its cellular localization. Nat Med 8:1145–1152PubMedCrossRefGoogle Scholar
  11. 11.
    Dan HC, Sun M, Yang L, Feldman RI, Sui XM, Ou CC, Nellist M, Yeung RS, Halley DJ, Nicosia SV, Cheng JQ (2002) Phosphatidylinositol 3-kinase/Akt pathway regulates tuberous sclerosis tumor suppressor complex by phosphorylation of tuberin. J Biol Chem 277:35364–35370PubMedCrossRefGoogle Scholar
  12. 12.
    Vousden KH, Lu X (2002) Live or let die: the cell’s response to p53. Nat Rev 2:594–604Google Scholar
  13. 13.
    Wu K, Crusius JBA, Shivanarda S, Fan DM, Pena AS (2002) The immunogenetic and pathogenesis of gastric cancer. Drugs Today 38:391–417PubMedCrossRefGoogle Scholar
  14. 14.
    Alberts SR, Cervantes A, van de Velde CJ (2003) Gastric cancer: epidemiology, pathology and treatment, Ann. Oncol 14:ii31–ii36Google Scholar
  15. 15.
    Ren J, Chen Z, Zhou SJ, Zhang XY, Pan BR, Fan DM (2000) Detection of circulating gastric carcinoma associated antigen MG7-Ag in human sera using an established single determinant immuno-polymerase chain reaction technique. Cancer 88:280–285PubMedCrossRefGoogle Scholar
  16. 16.
    Roder DM (2002) The epidemiology of gastric cancer. Gastric Cancer 5:5–11PubMedCrossRefGoogle Scholar
  17. 17.
    Yang K, Tao N (1994) Establishment and biological characterization of human gastric epithelial cell lines GES-1. Chin J Oncol 16:7–10 Google Scholar
  18. 18.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  19. 19.
    Chariyalertsak S, Sirikulchayanonta V, Mayer D, Chariyalertsak S, Sirikulchayanonta V, Mayer D, Kopp-Schneider A, Furstenberger G, Marks F, Muller-Decker K (2001) Aberrant cyclooxygenase isozyme expression in human intrahepatic cholangiocarcinoma. Gut 48:80–86PubMedCrossRefGoogle Scholar
  20. 20.
    Maaser K, Daubler P, Barthel B, Heine B, von Lampe B, Stein H, Hoffmeister B, Scherer H, Scherubl H (2003) Oesophageal squamous cell neoplasia in head and neck cancer patients: upregulation of COX-2 during carcinogenesis. Br J Cancer 88:1217–1222PubMedCrossRefGoogle Scholar
  21. 21.
    Okano J, Gaslightwala I, Birnbaum MJ, Rustgi AK, Nakagawa H (2000) Akt/protein kinase B isoforms are differentially regulated by epidermal growth factor stimulation in esophageal cancer cells. J Biol Chem 275:30934–30942PubMedCrossRefGoogle Scholar
  22. 22.
    Cross MJ, Stewart A, Hodgkin MN, Kerr DJ, Wakelam MJ (1995) Wortmannin and its structural analogue demethoxyviridin inhibit stimulated phospholipase A2 activity in Swiss 3T3 cells. Wortmannin is not a specific inhibitor of phosphatidylinositol 3-kinase. J Biol Chem 270:25352–25355PubMedCrossRefGoogle Scholar
  23. 23.
    Nam SY, Lee HS, Jung GA, Choi J, Cho SJ, Kim MK, Kim WH, Lee BL (2003) Akt/PKB activation in gastric carcinomas correlates with linicopathologic variables and prognosis. APMIS 11:1105–1113CrossRefGoogle Scholar
  24. 24.
    Correa P (1988) A human model of gastric carcinogenesis. Cancer Res 48:3554–3560PubMedGoogle Scholar
  25. 25.
    Andjelkovic M, Alessi DR, Meier R, Fernandez A, Lamb NJ, Frech M, Cron P, Cohen P, Lucocq JM, Hemmings BA (1997) Role of translocation in the activation and function of protein kinase B. J Biol Chem 272:31515–31524PubMedCrossRefGoogle Scholar
  26. 26.
    Filippa N, Sable CL, Hemmings BA, Van Obberghen E (2000) Effect of phosphoinositide-dependent kinase 1 on protein kinase B translocation and its subsequent activation. Mol Cell Biol 20:5712–5721PubMedCrossRefGoogle Scholar
  27. 27.
    Dufner A, Andjelkovic M, Burgering BM, Hemmings BA, Thomas G (1999) Protein kinase B localization and activation differentially affect S6 kinase 1 activity and eukaryotic translation initiation factor 4E-binding protein 1 phosphorylation. Mol Cell Biol 19:4525–4534PubMedGoogle Scholar
  28. 28.
    Bi F, Fan DM, Hui HX, Wang CJ, Zhang XY (2001) Reversion of the malignant phenotype of gastric cancer cell SGC7901 by c-e-rbB-z-specific hammerhead ribozyme. Cancer Gene Ther 8:835–842PubMedCrossRefGoogle Scholar
  29. 29.
    Sato K, Tamura G, Tsuchiya T, Endoh Y, Sakata K, Motoyama T, Usuba O, Kimura W, Terashima M, Nishizuka S, Zou T, Meltzer SJ (2002) Analysis of genetic and epigenetic alterations of the PTEN gene in gastric cancer. Virchows Arch 440:160–165PubMedCrossRefGoogle Scholar
  30. 30.
    Borgatti P, Martelli AM, Bellacosa A, Casto R, Massari L, Capitani S, Neri LM (2000) Translocation of Akt/PKB to the nucleus of osteoblast-like MC3T3-E1 cells exposed to proliferative growth factors. FEBS Lett 477:27–32PubMedCrossRefGoogle Scholar
  31. 31.
    Paradis S, Ruvkun G (1998) Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev 12:2488–2498PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Zheyi Han
    • 1
  • Kaichun Wu
    • 1
  • Huiqin Shen
    • 1
  • Chunying Li
    • 2
  • Shuang Han
    • 1
  • Liu Hong
    • 1
  • Yongquan Shi
    • 1
  • Na Liu
    • 1
  • Changcun Guo
    • 1
  • Yan Xue
    • 1
  • Taidong Qiao
    • 1
  • Daiming Fan
    • 1
  1. 1.The State Key Laboratory for Cancer Biology, Institute of Digestive Diseases, Xijing HospitalFourth Military Medical UniversityXi’anP.R. China
  2. 2.Department of Dermatology, Xijing HospitalFourth Military Medical UniversityXi’anP.R. China

Personalised recommendations