Digestive Diseases and Sciences

, Volume 52, Issue 7, pp 1713–1721 | Cite as

The Anti-Cancer Effect of COX-2 Inhibitors on Gastric Cancer Cells

  • Soo-Jeong Cho
  • Nayoung Kim
  • Joo Sung Kim
  • Hyun Chae Jung
  • In Sung Song
Original paper

Abstract

Epidemiologic studies have shown that nonsteroidal anti-inflammatory drugs could reduce the risk of cancer development including gastric cancer. This study was performed to identify the antineoplastic mechanism in gastric cancer cells affected by celecoxib, a selective COX-2 inhibitor. MTT assay, ELISA for prostaglandin E2 (PGE2), cell-cycle analyses, immunofluorescent staining, and flow cytometry were performed after treating human gastric cancer cell lines (AGS and MKN-45) with celecoxib or indomethacin. The viabilities of celecoxib-treated cells decreased in a dose- and time-dependent manner compared with indomethacin. Drop of PGE2 levels was more prominent in the presence of indomethacin than in that of celecoxib. Celecoxib arrested the cell cycle in the G0–G1 phase, which reduced cell numbers in the S phase. Moreover, celecoxib increased the apoptotic cell proportions, a 4-fold increase over control cells. The anticancer effects of celecoxib on gastric cancer cells appear to be mediated by cell-cycle arrest and apoptosis, and not by COX-2 or PGE2 suppression alone.

Keywords

Selective COX-2 inhibitor Celecoxib Gastric cancer Apoptosis 

References

  1. 1.
    Korea Central Cancer Registry: 2002 Annual Report of the Korea Central Cancer Registry (Based on Registered Data from 139 Hospitals). Korea Cancer Registry and Ministry of Health and Welfare.Google Scholar
  2. 2.
    Dubois RN, Abramson SB, Crofford L, Gupta RA, Simon LS, Van De Putte LB, Lipsky PE (1998) Cyclooxygenase in biology and disease. FASEB J 12:1063–1073PubMedGoogle Scholar
  3. 3.
    Levy GN (1997) Prostaglandin H synthases, nonsteroidal anti-inflammatory drugs, and colon cancer. FASEB J 11:234–247PubMedGoogle Scholar
  4. 4.
    Harris RE, Namboodiri KK, Farrar WB (1996) Nonsteroidal antiinflammatory drugs and breast cancer. Epidemiology 7:203–205PubMedCrossRefGoogle Scholar
  5. 5.
    Hsu AL, Ching TT, Wang DS, Song X, Rangnekar VM, Chen CS (2000) The cyclooxygenase-2 inhibitor celecoxib induces apoptosis by blocking Akt activation in human prostate cancer cells independently of Bcl-2. J Biol Chem 275:11397–11403PubMedCrossRefGoogle Scholar
  6. 6.
    Funkhouser EM, Sharp GB (1995) Aspirin and reduced risk of esophageal carcinoma. Cancer 76:1116–1119PubMedCrossRefGoogle Scholar
  7. 7.
    Thun MJ, Namboodiri MM, Calle EE, Flanders WD, Heath CW Jr (1993) Aspirin use and risk of fatal cancer. Cancer Res 53:1322–1327PubMedGoogle Scholar
  8. 8.
    Langman MJ, Cheng KK, Gilman EA, Lancashire RJ (2000) Effect of anti-inflammatory drugs on overall risk of common cancer: case-control study in general practice research database. BMJ 320:1642–1646PubMedCrossRefGoogle Scholar
  9. 9.
    Akre K, Ekstrom AM, Signorello LB, Hansson LE, Nyren O (2001) Aspirin and risk for gastric cancer: a population-based case-control study in Sweden. Br J Cancer 84:965–968PubMedCrossRefGoogle Scholar
  10. 10.
    Wang WH, Huang JQ, Zheng GF, Lam SK, Karlberg J, Wong BC (2003) Non-steroidal anti-inflammatory drug use and the risk of gastric cancer: a systematic review and meta-analysis. J Natl Cancer Inst 95:1784–1791PubMedGoogle Scholar
  11. 11.
    Steinbach G, Lynch PM, Phillips RK, Wallace MH, Hawk E, Gordon GB, Wakabayashi N, Saunders B, Shen Y, Fujimura T, Su LK, Levin B (2000) The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N Engl J Med 342:1946–1952PubMedCrossRefGoogle Scholar
  12. 12.
    Solomon SD, McMurray JJ, Pfeffer MA, Wittes J, Fowler R, Finn P, Anderson WF, Zauber A, Hawk E, Bertagnolli M (2005) Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. N Engl J Med 352:1071–1080PubMedCrossRefGoogle Scholar
  13. 13.
    Nelson NJ (2006) Celecoxib shown effective in preventing colon polyps. J Natl Cancer Inst 98:665–667PubMedCrossRefGoogle Scholar
  14. 14.
    Williams CS, Smalley W, DuBois RN (1997) Aspirin use and potential mechanisms for colorectal cancer prevention. J Clin Invest 100:1325–1329PubMedGoogle Scholar
  15. 15.
    Sung JJ, Leung WK, Go MY, To KF, Cheng AS, Ng EK, Chan FK (2000) Cyclooxygenase-2 expression in Helicobacter pylori-associated premalignant and malignant gastric lesions. Am J Pathol 157:729–735PubMedGoogle Scholar
  16. 16.
    Leung WK, To KF, Ng YP, Lee TL, Lau JY, Chan FK, Ng EK, Chung SC, Sung JJ (2001) Association between cyclo-oxygenase-2 overexpression and missense p53 mutations in gastric cancer. Br J Cancer 84:335–339PubMedCrossRefGoogle Scholar
  17. 17.
    Pairet M, Engelhardt G (1996) Distinct isoforms (COX-1 and COX-2) of cyclooxygenase: possible physiological and therapeutic implications. Fundam Clin Pharmacol 10:1–17PubMedCrossRefGoogle Scholar
  18. 18.
    Williams CS, Mann M, DuBois RN (1999) The role of cyclooxygenases in inflammation, cancer, and development. Oncogene 18:7908–7916PubMedCrossRefGoogle Scholar
  19. 19.
    Hu PJ, Yu J, Zeng ZR, Leung WK, Lin HL, Tang BD, Bai AH, Sung JJ (2004) Chemoprevention of gastric cancer by celecoxib in rats. Gut 53:195–200PubMedCrossRefGoogle Scholar
  20. 20.
    Charalambous D, O’Brien PE (1996) Inhibition of colon cancer precursors in the rat by sulindac sulphone is not dependent on inhibition of prostaglandin synthesis. J Gastroenterol Hepatol 11:307–310PubMedGoogle Scholar
  21. 21.
    Elder DJ, Halton DE, Hague A, Paraskeva C (1997) Induction of apoptotic cell death in human colorectal carcinoma cell lines by a cyclooxygenase-2 (COX-2)-selective nonsteroidal anti-inflammatory drug: independence from COX-2 protein expression. Clin Cancer Res 3:1679–1683PubMedGoogle Scholar
  22. 22.
    Hanif R, Pittas A, Feng Y, Koutsos MI, Qiao L, Staiano-Coico L, Shiff SI, Rigas B (1996) Effects of nonsteroidal anti-inflammatory drugs on proliferation and on induction of apoptosis in colon cancer cells by a prostaglandin-independent pathway. Biochem Pharmacol 52:237–245PubMedCrossRefGoogle Scholar
  23. 23.
    Stratford IJ, Stephens MA (1989) The differential hypoxic cytotoxicity of bioreductive agents determined in vitro by the MTT assay. Int J Radiat Oncol Biol Phys 16:973–6PubMedGoogle Scholar
  24. 24.
    Arico S, Pattingre S, Bauvy C, Gane P, Barbat A, Codogno P, Ogier-Denis E (2002) Celecoxib induces apoptosis by inhibiting 3-phosphoinositide-dependent protein kinase-1 activity in the human colon cancer HT-29 cell line. J Biol Chem 277:27613–27621PubMedCrossRefGoogle Scholar
  25. 25.
    Grosch S, Tegeder I, Niederberger E, Brautigam L, Geisslinger G (2001) COX-2 independent induction of cell cycle arrest and apoptosis in colon cancer cells by the selective COX-2 inhibitor celecoxib. FASEB J 15:2742–2744PubMedGoogle Scholar
  26. 26.
    Waskewich C, Blumenthal RD, Li H, Stein R, Goldenberg DM, Burton J (2002) Celecoxib exhibits the greatest potency amongst cyclooxygenase (COX) inhibitors for growth inhibition of COX-2-negative hematopoietic and epithelial cell lines. Cancer Res 62:2029–2033PubMedGoogle Scholar
  27. 27.
    Wu T, Leng J, Han C, Demetris AJ (2004) The cyclooxygenase-2 inhibitor celecoxib blocks phosphorylation of Akt and induces apoptosis in human cholangiocarcinoma cells. Mol Cancer Ther 3:299–307PubMedGoogle Scholar
  28. 28.
    Karin M, Cao Y, Greten FR, Li ZW (2002) NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2:301–310PubMedCrossRefGoogle Scholar
  29. 29.
    Leng J, Han C, Demetris AJ, Michalopoulos GK, Wu T (2003) Cyclooxygenase-2 promotes hepatocellular carcinoma cell growth through Akt activation: evidence for Akt inhibition in celecoxib-induced apoptosis. Hepatology 38:756–768PubMedCrossRefGoogle Scholar
  30. 30.
    Datta SR, Brunet A, Greenberg ME (1999) Cellular survival: a play in three Akts. Genes Dev 13:2905–2927PubMedCrossRefGoogle Scholar
  31. 31.
    Yamaguchi A, Tamatani M, Matsuzaki H, Namikawa K, Kiyama H, Vitek MP, Mitsuda N, Tohyama M (2001) Akt activation protects hippocampal neurons from apoptosis by inhibiting transcriptional activity of p53. J Biol Chem 276:5256–5264PubMedCrossRefGoogle Scholar
  32. 32.
    Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91:231–241PubMedCrossRefGoogle Scholar
  33. 33.
    Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, Frisch S, Reed JC (1998) Regulation of cell death protease caspase-9 by phosphorylation. Science 282:1318–1321PubMedCrossRefGoogle Scholar
  34. 34.
    Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857–868PubMedCrossRefGoogle Scholar
  35. 35.
    Spektor G, Fuster V (2005) Drug insight: cyclo-oxygenase 2 inhibitors and cardiovascular risk—where are we now? Nat Clin Pract Cardiovasc Med 2:290–300PubMedCrossRefGoogle Scholar
  36. 36.
    Bresalier RS, Sandler RS, Quan H, Bolognese JA, Oxenius B, Horgan K, Lines C, Riddell R, Morton D, Lanas A, Konstam MA, Baron JA (2005) Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. N Engl J Med 352:1092–1102PubMedCrossRefGoogle Scholar
  37. 37.
    D’Agostino RB Sr, Grundy S, Sullivan LM, Wilson P (2001) Validation of the Framingham coronary heart disease prediction scores: results of a multiple ethnic groups investigation. JAMA 286:180–187PubMedCrossRefGoogle Scholar
  38. 38.
    Solomon DH, Schneeweiss S, Glynn RJ, Kiyota Y, Levin R, Mogun H, Avorn J (2004) Relationship between selective cyclooxygenase-2 inhibitors and acute myocardial infarction in older adults. Circulation 109:2068–2073PubMedCrossRefGoogle Scholar
  39. 39.
    Chenevard R, Hurlimann D, Bechir M, Enseleit F, Spieker L, Hermann M, Riesen W, Gay S, Gay RE, Neidhart M, Michel B, Luscher TF, Noll G, Ruschitzka F (2003) Selective COX-2 inhibition improves endothelial function in coronary artery disease. Circulation 107:405–409PubMedCrossRefGoogle Scholar
  40. 40.
    Steffel J, Hermann M, Greutert H, Gay S, Luscher TF, Ruschitzka F, Tanner FC (2005) Celecoxib decreases endothelial tissue factor expression through inhibition of c-Jun terminal NH2 kinase phosphorylation. Circulation 111:1685–1689PubMedCrossRefGoogle Scholar
  41. 41.
    Antman EM, DeMets D, Loscalzo J (2005) Cyclooxygenase inhibition and cardiovascular risk. Circulation 112:759–770PubMedCrossRefGoogle Scholar
  42. 42.
    Silverstein FE, Faich G, Goldstein JL, Simon LS, Pincus T, Whelton A, Makuch R, Eisen G, Agrawal NM, Stenson WF, Burr AM, Zhao WW, Kent JD, Lefkowith JB, Verburg KM, Geis GS (2000) Gastrointestinal toxicity with celecoxib vs nonsteroidal anti-inflammatory drugs for osteoarthritis and rheumatoid arthritis: the CLASS study: A randomized controlled trial. Celecoxib Long-term Arthritis Safety Study. JAMA 284:1247–1255PubMedCrossRefGoogle Scholar
  43. 43.
    Sowers JR, White WB, Pitt B, Whelton A, Simon LS, Winer N, Kivitz A, van Ingen H, Brabant T, Fort JG (2005) The Effects of cyclooxygenase-2 inhibitors and nonsteroidal anti-inflammatory therapy on 24-hour blood pressure in patients with hypertension, osteoarthritis, and type 2 diabetes mellitus. Arch Intern Med 165:161–168PubMedCrossRefGoogle Scholar
  44. 44.
    Bombardier C, Laine L, Reicin A, Shapiro D, Burgos-Vargas R, Davis B, Day R, Ferraz MB, Hawkey CJ, Hochberg MC, Kvien TK, Schnitzer TJ (2000) Comparison of upper gastrointestinal toxicity of rofecoxib and naproxen in patients with rheumatoid arthritis. VIGOR Study Group. N Engl J Med 343:1520–1528, 1522 p following 1528Google Scholar
  45. 45.
    Knudsen JF, Carlsson U, Hammarstrom P, Sokol GH, Cantilena LR (2004) The cyclooxygenase-2 inhibitor celecoxib is a potent inhibitor of human carbonic anhydrase II. Inflammation 28:285–290PubMedCrossRefGoogle Scholar
  46. 46.
    Weber A, Casini A, Heine A, Kuhn D, Supuran CT, Scozzafava A, Klebe G (2004) Unexpected nanomolar inhibition of carbonic anhydrase by COX-2-selective celecoxib: new pharmacological opportunities due to related binding site recognition. J Med Chem 47:550–557PubMedCrossRefGoogle Scholar
  47. 47.
    Walter MF, Jacob RF, Day CA, Dahlborg R, Weng Y, Mason RP (2004) Sulfone COX-2 inhibitors increase susceptibility of human LDL and plasma to oxidative modification: comparison to sulfonamide COX-2 inhibitors and NSAIDs. Atherosclerosis 177:235–243PubMedCrossRefGoogle Scholar
  48. 48.
    Wirth LJ, Haddad RI, Lindeman NI, Zhao X, Lee JC, Joshi VA, Norris CM Jr, Posner MR (2005) Phase I study of gefitinib plus celecoxib in recurrent or metastatic squamous cell carcinoma of the head and neck. J Clin Oncol 23:6976–6981PubMedCrossRefGoogle Scholar
  49. 49.
    Csiki I, Morrow JD, Sandler A, Shyr Y, Oates J, Williams MK, Dang T, Carbone DP, Johnson DH (2006) Targeting cyclooxygenase-2 in recurrent non-small cell lung cancer: a phase II trial of celecoxib and docetaxel. Clin Cancer Res 11:6634–6640CrossRefGoogle Scholar
  50. 50.
    Ferrari V, Valcamonico F, Amoroso V, Simoncini E, Vassalli L, Marpicati P, Rangoni G, Grisanti S, Tiberio GA, Nodari F, Strina C, Marini G (2006) Gemcitabine plus celecoxib (GECO) in advanced pancreatic cancer: a phase II trial. Cancer Chemother Pharmacol 57:185–190PubMedCrossRefGoogle Scholar
  51. 51.
    Prince HM, Mileshkin L, Roberts A, Ganju V, Underhill C, Catalano J, Bell R, Seymour JF, Westerman D, Simmons PJ, Lillie K, Milner AD, Iulio JD, Zeldis JB, Ramsay R (2005) A multicenter phase II trial of thalidomide and celecoxib for patients with relapsed and refractory multiple myeloma. Clin Cancer Res 11:5504–5514PubMedCrossRefGoogle Scholar
  52. 52.
    Gasparini G, Meo S, Comella G, Stani SC, Mariani L, Gamucci T, Avallone A, Lo Vullo S, Mansueto G, Bonginelli P, Gattuso D, Gion M (2005) The combination of the selective cyclooxygenase-2 inhibitor celecoxib with weekly paclitaxel is a safe and active second-line therapy for non-small cell lung cancer: a phase II study with biological correlates. Cancer J 11:209–216PubMedCrossRefGoogle Scholar
  53. 53.
    El-Rayes BF, Zalupski MM, Shields AF, Ferris AM, Vaishampayan U, Heilbrun LK, Venkatramanamoorthy R, Adsay V, Philip PA (2005) A phase II study of celecoxib, gemcitabine, and cisplatin in advanced pancreatic cancer. Invest New Drugs 23:583–590PubMedCrossRefGoogle Scholar
  54. 54.
    Nugent FW, Mertens WC, Graziano S, Levitan N, Collea R, Gajra A, Marshall J, McCann J (2005) Docetaxel and cyclooxygenase-2 inhibition with celecoxib for advanced non-small cell lung cancer progressing after platinum-based chemotherapy: a multicenter phase II trial. Lung Cancer 48:267–273PubMedCrossRefGoogle Scholar
  55. 55.
    Blanke CD, Mattek NC, Deloughery TG, Koop DR (2005) A phase I study of 5-fluorouracil, leucovorin, and celecoxib in patients with incurable colorectal cancer. Prostaglandins Other Lipid Mediat 75:169–172PubMedCrossRefGoogle Scholar
  56. 56.
    Cerchietti LC, Bonomi MR, Navigante AH, Castro MA, Cabalar ME, Roth BM (2005) Phase I/II study of selective cyclooxygenase-2 inhibitor celecoxib as a radiation sensitizer in patients with unresectable brain metastases. J Neurooncol 71:73–81PubMedCrossRefGoogle Scholar
  57. 57.
    Lipton A, Harvey H, Witters L, Kerr S, Legore K, Campbell C (2004) Gemcitabine/Irinotecan/celecoxib in pancreatic cancer. Oncology (Williston Park) 18:43–45Google Scholar
  58. 58.
    Reardon DA, Quinn JA, Vredenburgh J, Rich JN, Gururangan S, Badruddoja M, Herndon JE, 2nd, Dowell JM, Friedman AH, Friedman HS (2005) Phase II trial of irinotecan plus celecoxib in adults with recurrent malignant glioma. Cancer 103:329–338PubMedCrossRefGoogle Scholar
  59. 59.
    Zhu L, Chow LW, Loo WT, Guan XY, Toi M (2004) Her2/neu expression predicts the response to antiaromatase neoadjuvant therapy in primary breast cancer: subgroup analysis from celecoxib antiaromatase neoadjuvant trial. Clin Cancer Res 10:4639–4644PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Soo-Jeong Cho
    • 1
  • Nayoung Kim
    • 1
    • 2
  • Joo Sung Kim
    • 1
  • Hyun Chae Jung
    • 1
  • In Sung Song
    • 1
    • 3
  1. 1.Department of Internal Medicine and Liver Research InstituteSeoul National University College of MedicineSeoulSouth Korea
  2. 2.Departments of Internal Medicine and, Seoul National University Bundang HospitalSeoungnamSouth Korea
  3. 3.Department of Internal MedicineSeoul National University College of MedicineSeoulSouth Korea

Personalised recommendations