Digestive Diseases and Sciences

, Volume 53, Issue 10, pp 2592–2603 | Cite as

Reactive Oxygen Species and the Hypomotility of the Gall Bladder as Targets for the Treatment of Gallstones with Melatonin: A Review

  • Sreedevi Koppisetti
  • Bharat Jenigiri
  • M. Pilar Terron
  • Sandra Tengattini
  • Hiroshi Tamura
  • Luis J. Flores
  • Dun-Xian Tan
  • Russel J. Reiter
Review Paper


Free radical-mediated damage of the gall bladder epithelium predisposes to the development of both gall bladder inflammation and gallstone formation, which often coexist. Melatonin, a pineal and gut secretory product, due to its antioxidant activity along with its effect on the aging gall bladder myocytes, inhibits gallstone formation. Melatonin reduces the biliary levels of cholesterol by inhibiting cholesterol absorption across the intestinal epithelium and by increasing the conversion of cholesterol to bile acids. The incidence of gallstones is increasing and is expected to rise dramatically with the increase in the longevity and the risk factors such as obesity. The change in the prevalence of cholelithiasis is associated with a proportionate rise in the incidence of cholangiocarcinoma. In an attempt to improve the quality of life of the rapidly increasing aging population, this article reviews up-to-date information on the pathophysiology of the gall bladder function and discusses the development of new therapies with potential good patient compliance and lower cost than the current treatments.


Cholelithiasis Gallstones Melatonin Antioxidant 


  1. 1.
    Shehadi WH (1979) The biliary system through the ages. Int Surg 64:63–78PubMedGoogle Scholar
  2. 2.
    National Institutes of Health Consensus Development Conference Statement on Gallstones and Laparoscopic Cholecystectomy. Am J Surg 165:390–396, 1993Google Scholar
  3. 3.
    Cross CE, Halliwell B, Borish ET, Pryor WA, Ames BN, Saul RL, McCord JM, Harman D (1987) Oxygen radicals and human disease. Ann Intern Med 107:526–545PubMedGoogle Scholar
  4. 4.
    Ahmed A, Cheung RC, Keefe EB (2000) Management of gallstones and their complications. Am Fam Physician 61:1673–1680, 1687–1688Google Scholar
  5. 5.
    Corradini SG, Elisei W, Giovannelli L, Ripani C, Della Guardia P, Corsi A, Cantafora A, Capocaccia L, Ziparo V, Stipa V, Chirletti P, Lomanto D, Attili AF (2000) Impaired human gallbladder lipid absorption in cholesterol gallstone disease and its effect on cholesterol solubility in bile. Gastroenterology 118:912–920PubMedCrossRefGoogle Scholar
  6. 6.
    Caroli-Bosc FX, Deveau C, Peten EP, Delabre B, Zanaldi H, Hebuterne X, Hastier P, Viudes F, Belanger F, Caroli-Bosc C, Harris A, Hardion M, Rampal P, Delmont JP (1998) Cholelithiasis and dietary risk factors (an epidemiologic investigation in Vidauban, Southeast France). Dig Dis Sci 43:2131–2137PubMedCrossRefGoogle Scholar
  7. 7.
    Holzbach RT, Marsh M, Olszewski M, Holan K (1973) Cholesterol solubility in bile. Evidence that supersaturated bile is frequent in healthy man. J Clin Invest 52:1467–1479PubMedCrossRefGoogle Scholar
  8. 8.
    Jirsa M, Groen AK (2001) Role of biliary proteins and non-protein factors in kinetics of cholesterol crystallisation and gallstone growth. Front Biosci 6:154–167CrossRefGoogle Scholar
  9. 9.
    Portincasa P, Di Ciaula A, Baldassarre G, Palmieri V, Gentile A, Cimmino A, Palasciano G (1994) Gallbladder motor function in gallstone patients: sonographic and in vitro studies on the role of gallstones, smooth muscle function and gallbladder wall inflammation. J Hepatol 21:430–440PubMedCrossRefGoogle Scholar
  10. 10.
    Hoogerbrugge-vd Linden N, de Rooy FW, Jansen H, van Blankenstein M (1990) Effect of pravastatin on biliary lipid composition and bile acid synthesis in familial hypercholesterolaemia. Gut 31:348–350PubMedCrossRefGoogle Scholar
  11. 11.
    LaMorte WW, Brotschi EA, Scott TE, Williams LF Jr (1985) Pigment gallstone formation in the cholesterol-fed guinea pig. Hepatology 5:21–27PubMedCrossRefGoogle Scholar
  12. 12.
    Hussain SA (2007) Effect of melatonin on cholesterol absorption in rats. J Pineal Res 42:267–271PubMedCrossRefGoogle Scholar
  13. 13.
    Chan TY, Tang PL (1995) Effect of melatonin on the maintenance of cholesterol homeostasis in the rat. Endocr Res 21:681–696PubMedGoogle Scholar
  14. 14.
    Hussain SA, Hussein KI, Saieed BN et al (2004) Improvement of the hypolipidemic effect of lovastatin with melatonin. Iraqi Postgrad Med J 3:343–346Google Scholar
  15. 15.
    Al-Mahabashy HM, Hussain SA, Numan NM et al (2006) The effects of melatonin on the oxidative stress, protein glycation, microalbuminuria and lipid profile in type 2 diabetes mellitus. Iraqi J Pharm Sci 15:27–32Google Scholar
  16. 16.
    Ismail SH, Hussain SA, Numan NA et al (2004) Hypolipidemic effect of melatonin in dyslipidemia associated with diabetes. Iraqi Postgrad Med J 3:223–226Google Scholar
  17. 17.
    Pita ML, Hoyos M, Martin-Lacave I, Osuna C, Fernández-Santos JM, Guerrero JM (2002) Long-term melatonin administration increases polyunsaturated fatty acid percentage in plasma lipids of hypercholesterolemic rats. J Pineal Res 32:179–186PubMedCrossRefGoogle Scholar
  18. 18.
    Gomez-Pinilla PJ, Camello-Almaraz C, Moreno R, Camello PJ, Pozo MJ (2006) Melatonin treatment reverts age-related changes in guinea pig gallbladder neuromuscular transmission and contractility. J Pharmacol Exp Ther 319:847–856PubMedCrossRefGoogle Scholar
  19. 19.
    Morales S, Camello PJ, Alcon S, Salido GM, Mawe G, Pozo MJ (2004) Coactivation of capacitative calcium entry and L-type calcium channels in guinea pig gallbladder. Am J Physiol Gastrointest Liver Physiol 286:G1090 –G1100PubMedCrossRefGoogle Scholar
  20. 20.
    Morales S, Camello PJ, Mawe GM, Pozo MJ (2005) Characterization of intracellular Ca2+ stores in gallbladder smooth muscle. Am J Physiol Gastrointest Liver Physiol 288:G507–G513PubMedCrossRefGoogle Scholar
  21. 21.
    van Erpecum KJ, vanBerge-Henegouwen GP (1999) Gallstones: an intestinal disease? Gut 44:435–438PubMedCrossRefGoogle Scholar
  22. 22.
    Portincasa P, van Erpecum KJ, vanBerge-Henegouwen GP (1997) Cholesterol crystallisation in bile. Gut 41:138–141PubMedGoogle Scholar
  23. 23.
    Xu QW, Shaffer EA (1996) The potential site of impaired gallbladder contractility in an animal model of cholesterol gallstone disease. Gastroenterology 110:251–257PubMedCrossRefGoogle Scholar
  24. 24.
    van de Heijning BJM, van de Meeberg P, Portincasa P, Doornewaard H, Hoebers FJP, van Erpecum KJ, Vanberge-Henegouwen GP (1999) Effects of ursodeoxycholic acid therapy on in vitro gallbladder contractility in patients with cholesterol gallstones. Dig Dis Sci 44:190–196PubMedCrossRefGoogle Scholar
  25. 25.
    Chen Q, Amaral J, Biancani P, Behar J (1999) Excess membrane cholesterol alters human gallbladder muscle contractility and membrane fluidity. Gastroenterology 116:678–685PubMedCrossRefGoogle Scholar
  26. 26.
    Jaworek J, Nawrot K, Konturek SJ, Leja-Szpak A, Thor P, Pawlik WW (2004) Melatonin and its precursor, L-tryptophan: influence on pancreatic amylase secretion in vivo and in vitro. J Pineal Res 36:155–164PubMedGoogle Scholar
  27. 27.
    Tan D, Manchester LC, Reiter RJ, Qi W, Hanes MA, Farley NJ (1999) High physiological levels of melatonin in the bile of mammals. Life Sci 65:2523–2529PubMedCrossRefGoogle Scholar
  28. 28.
    Messner M, Huether G, Lorf T, Ramadori G, Schwörer H (2001) Presence of melatonin in the human hepatobiliary-gastrointestinal tract. Life Sci 69:543–551PubMedCrossRefGoogle Scholar
  29. 29.
    Aust S, Thalhammer T, Humpeler S, Jager W, Klimpfinger M, Tucek G, Obrist P, Marktl W, Penner E, Ekmekcioglu C (2004) The melatonin receptor subtype MT1 is expressed in human gallbladder epithelia. J Pineal Res 36:43–48PubMedCrossRefGoogle Scholar
  30. 30.
    Von Gall C, Stehle JH, Weaver DR (2002) Mammalian melatonin receptors: molecular biology and signal transduction. Cell Tissue Res 309:151–162CrossRefGoogle Scholar
  31. 31.
    van Erpecum KJ, Venneman NG, Portincasa P, vanBerge-Henegouwen GP (2000) Review article: agents affecting gall-bladder motility—role in treatment and prevention of gallstones. Aliment Pharmacol Ther 14:66–70PubMedCrossRefGoogle Scholar
  32. 32.
    Chen XW, Cai JT (2003) The impact of selective cycloxygenase-2 inhibitor celecoxib on the formation of cholesterol gallstone. Zhonghua Nei Ke Za Zhi 42:797–799PubMedGoogle Scholar
  33. 33.
    Kourie JI (1998) Interaction of reactive oxygen species with ion transport mechanisms. Am J Physiol 275:C1–C24PubMedGoogle Scholar
  34. 34.
    Lee SP, Scott AJ (1982) The evolution of morphologic changes in the gallbladder before stone formation in mice fed a cholesterol-cholic acid diet. Am J Pathol 108:1–8PubMedGoogle Scholar
  35. 35.
    Lee SP, Lamont JT, Carey MC (1981) Role of gallbladder mucus hypersecretion in the evolution of cholesterol gallstones: Studies in the prairie dog. J Clin Invest 67:1712–1723PubMedCrossRefGoogle Scholar
  36. 36.
    Scott AJ (1978) Epithelial cell proliferation in diverse models of experimental cholelithiasis. Gut 19:558–562PubMedCrossRefGoogle Scholar
  37. 37.
    Lee SP, Scott AJ (1982) The evolution of morphologic changes in the gallbladder before stone formation in mice fed a cholesterolcholic acid diet. Am J Pathol 108:1–8PubMedGoogle Scholar
  38. 38.
    Lee SP, Nicholls JF (1986) Nature and composition of biliary sludge. Gastroenterology 90:677–686PubMedGoogle Scholar
  39. 39.
    Burnstein MJ, Ilson RG, Petrunke CN, Taylor RD, Strasberg SM (1983) Evidence for a potent nucleating factor in the gallbladder bile of patients with cholesterol stones. Gastroenterology 85:801–807PubMedGoogle Scholar
  40. 40.
    Bouchier IA, Cooperband SR, El Kodsi BM (1965) Mucous substances and viscosity of normal and pathological human bile. Gastroenterology 49:343–353PubMedGoogle Scholar
  41. 41.
    Lee SP, LaMont JT, Carey MC (1981) Role of gallbladder mucin hyper secretion in the evolution of cholesterol gallstones: studies in the prairie dog. J Clin Invest 67:1712–1723PubMedCrossRefGoogle Scholar
  42. 42.
    Kim HJ, Lee SK, Kim MH, Seo DW, Min YI (2003) Cyclooxygenase-2 mediates mucin secretion from epithelial cells of lipopolysaccharide-treated canine gallbladder. Dig Dis Sci 48:726–732PubMedCrossRefGoogle Scholar
  43. 43.
    Lee KT, Liu TS (2001) Altered mucin gene expression in stone-containing intrahepatic bile ducts and cholangiocarcinomas. Dig Dis Sci 46:2166–2172PubMedCrossRefGoogle Scholar
  44. 44.
    Van Klinken BJ, Dekker J, Van Gool SA, Van Marle J, Buller HA, Einerhand AW (1998) MUC5B is the prominent mucin in human gallbladder and is also expressed in a subset of colonic goblet cells. Am J Physiol 274:G871–878PubMedGoogle Scholar
  45. 45.
    Vilkin A, Nudelman I, Morgenstern S, Geller A, Dayan YB, Levi Z, Rodionov G, Hardy B, Konikoff F, Gobbic D, Niv Y (2007) Gallbladder inflammation is associated with increase in mucin expression and pigmented stone formation. Dig Dis Sci 52:1613–1620PubMedCrossRefGoogle Scholar
  46. 46.
    Nunes DP, Afdhal NH, Offner GD (1999) A recombinant bovine gallbladder mucin polypeptide binds biliary lipids and accelerates cholesterol crystal appearance time. Gastroenterology 116:936–942PubMedCrossRefGoogle Scholar
  47. 47.
    Afdhal NH, Ostrow JD, Koehler R, Niu N, Groen AK, Veis A, Nunes DP, Offner GD (1995) Interaction of bovine gallbladder mucin and calcium-binding protein: effects on calcium phosphate precipitation. Gastroenterology 109:1661–1672PubMedCrossRefGoogle Scholar
  48. 48.
    LaMont JT, Smith BF, Moore JR (1984) Role of gallbladder mucin in pathophysiology of gallstones. Hepatology 4:51S–56SPubMedCrossRefGoogle Scholar
  49. 49.
    Rhodes M, Allen A, Dowling RH, Murphy G, Lennard TW (1992) Inhibition of human gall bladder mucus synthesis in patients undergoing cholecystectomy. Gut 33:1113–1117PubMedCrossRefGoogle Scholar
  50. 50.
    Chapman WC, Peterkin GA 3rd, LaMorte WW, Williams LF Jr (1989) Alterations in biliary motility correlate with increased gallbladder prostaglandin synthesis in early cholelithiasis in prairie dog. Dig Dis Sci 34:1420–1424PubMedCrossRefGoogle Scholar
  51. 51.
    Ho SB, Shekels LL, Toribara NW, Gipson IK, Kim YS, Purdum PP 3rd, Cherwitz DL (2000) Altered mucin core peptide expression in acute and chronic cholecystitis. Dig Dis Sci 45:1061–1071PubMedCrossRefGoogle Scholar
  52. 52.
    Jansson R, Steen G, Svanvik J (1978) Effects of intravenous vasoactive intestinal polypeptide (VIP) on gallbladder function in the cat. Gastroenterology 75:47–50PubMedGoogle Scholar
  53. 53.
    Shiesh SC, Chen CY, Lin XZ, Liu ZA, Tsao HC (2000) Melatonin prevents pigment gallstone formation induced by bile duct ligation in guinea pigs. Hepatology 32:455–460PubMedCrossRefGoogle Scholar
  54. 54.
    Mayo JC, Sainz RM, Tan DX, Hardeland R, Leon J, Rodriguez C, Reiter RJ (2005) Anti-inflammatory actions of melatonin and its metabolites, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and N1-acetyl-5-methoxykynuramine (AMK) in macrophages. J Neuroimmunol 165:139–149PubMedCrossRefGoogle Scholar
  55. 55.
    Wu KK (2005) Control of cyclooxygenase-2 transcriptional activation by pro-inflammatory mediators. Prostaglandins Leukot Essent Fatty Acids 72:89–93PubMedCrossRefGoogle Scholar
  56. 56.
    Xie QW, Whisnant R, Nathan C (1993) Promoter of the mouse gene encoding calcium-independent nitric oxide synthase confers inducibility by interferon gamma and bacterial lipopolysaccharide. J Exp Med 177:1779–1784PubMedCrossRefGoogle Scholar
  57. 57.
    Lowenstein CJ, Alley EW, Raval P, Snowman AM, Snyder SH, Russell SW, Murphy WJ (1993) Macrophage nitric oxide synthase gene: two upstream regions mediate induction by interferon gamma and lipopolysaccharide. Proc Natl Acad Sci U S A 90:9730–9734PubMedCrossRefGoogle Scholar
  58. 58.
    Wadleigh DJ, Reddy ST, Kopp E, Ghosh S, Herschman HR (2000) Transcriptional activation of the cyclooxygenase-2 gene in endotoxin-treated RAW 264.7 macrophages. J Biol Chem 275:6259–6266PubMedCrossRefGoogle Scholar
  59. 59.
    Herschman HR (1996) Prostaglandin synthase 2. Biochim Biophys Acta 1299:125–140PubMedGoogle Scholar
  60. 60.
    Dixit V, Mak TW (2002) NF-kappaB signaling: many roads lead to Madrid. Cell 111:615–619PubMedCrossRefGoogle Scholar
  61. 61.
    Conter RL, Washington JL, Liao CC, Kauffman GL Jr (1992) Gallbladder mucosal blood flow increases during early cholesterol gallstone formation. Gastroenterology 102:1764–1770PubMedGoogle Scholar
  62. 62.
    Nash S, Stafford J, Madara JL (1987) Effects of polymorphonuclear leukocyte transmigration on the barrier function of cultured intestinal epithelial monolayers. J Clin Invest 80:1104–1113PubMedCrossRefGoogle Scholar
  63. 63.
    Hale WB, Turner B, Lamont JT (1987) Oxygen radicals stimulate guinea pig gallbladder glycoprotein secretion in vitro. Am J Physiol 253:G627–G630PubMedGoogle Scholar
  64. 64.
    Lichtenberg D, Ragimova S, Peled Y, Halpern Z (1988) Phospholipid peroxidation as a factor in gallstone pathogenesis. FEBS Lett 228:179–181PubMedCrossRefGoogle Scholar
  65. 65.
    Holan KR, Holzbach RT, Hermann RE, Cooperman AM, Claffey WJ (1979) Nucleation time: a key factor in the pathogenesis of cholesterol gallstone disease. Gastroenterology 77:611–617PubMedGoogle Scholar
  66. 66.
    Eder MI, Miquel JF, Jungst D, Paumagartner G, VonRitter C (1996) Reactive oxygen metabolites promote cholesterol crystal formation in model bile: role of lipid peroxidation. Free Radic Biol Med 20:743–749PubMedCrossRefGoogle Scholar
  67. 67.
    Weiss SJ (1989) Tissue destruction by neutrophils. N Engl J Med 320:365–376PubMedCrossRefGoogle Scholar
  68. 68.
    Carey MC, Small DM (1978) The physical chemistry of cholesterol solubility in bile. Relationship to gallstone formation and dissolution in man. J Clin Invest 61:998–1026PubMedCrossRefGoogle Scholar
  69. 69.
    Esterbauer H , Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11:81–128PubMedCrossRefGoogle Scholar
  70. 70.
    Hale WB, Turner B, LaMont JT (1987) Oxygen radicals stimulate guinea pig gallbladder glycoprotein secretion in vitro. Am J Physiol 235:G627–G630Google Scholar
  71. 71.
    Geetha A (2002) Evidence for oxidative stress in the gall bladder mucosa of gallstone patients. J Biochem Mol Biol Biophys 6:427–432PubMedCrossRefGoogle Scholar
  72. 72.
    Reiter RJ, Tan DX, Manchester LC, El Sawi MR (2002) Melatonin reduces oxidant damage and promotes mitochondrial respiration: implications for aging. Ann NY Acad Sci 959:238–250PubMedCrossRefGoogle Scholar
  73. 73.
    Hardeland R, Reiter RJ, Poeggeler B, Tan DX (1993) The significance of the metabolism of the neurohormone melatonin: antioxidative protection and formation of bioactive substances. Neurosci Biobehav Rev 17:347–357PubMedCrossRefGoogle Scholar
  74. 74.
    Reiter RJ, Tan DX, Terron MP, Flores LJ, Czarnocki Z (2007) Melatonin and its metabolites: new findings regarding their production and their radical scavenging actions. Acta Biochim Pol 54:1–9PubMedGoogle Scholar
  75. 75.
    Ozturk H, Öztürk H, Yagmur Y, Uzunlar AK (2006) Effects of melatonin administration on intestinal adaptive response after massive bowel resection in rats. Dig Dis Sci 51:333–337PubMedCrossRefGoogle Scholar
  76. 76.
    Bilici D, Süleyman H, Nur Banoğlu Z, Kiziltunç A, Avci B, Çiftçioğlu A, Bilici S (2002) Melatonin prevents ethanol-induced gastric mucosal damage possibly due to its antioxidant effect. Dig Dis Sci 47:856–861PubMedCrossRefGoogle Scholar
  77. 77.
    Qi W, Tan DX, Reiter RJ, Kim SJ, Manchester LC, Cabrera J, Sainz RM, Mayo JC (1999) Melatonin reduces lipid peroxidation and tissue edema in cerulein-induced acute pancreatitis in rats. Dig Dis Sci 44:2257–2262PubMedCrossRefGoogle Scholar
  78. 78.
    Şener-Muratoğlu G, Paskaloğlu K, Arbak S, Hürdağ C, Ayanoğlu-Dülger G (2001) Protective effect of famotidine, omeprazole, and melatonin against acetylsalicylic acid-induced gastric damage in rats. Dig Dis Sci 46:318–330PubMedCrossRefGoogle Scholar
  79. 79.
    Sener G, Goren FO, Ulusoy NB, Ersoy Y, Arbak S, Dólger GA (2005) Protective effect of melatonin and omeprazole against alendronat-induced gastric damage. Dig Dis Sci 50:1506–1512PubMedCrossRefGoogle Scholar
  80. 80.
    Bubenik GA (2002) Gastrointestinal melatonin: localization, function, and clinical relevance. Dig Dis Sci 47:2336–2348PubMedCrossRefGoogle Scholar
  81. 81.
    Contuk G, Ercan F, Çetinel S, Çikler E, Sener G (2005) Role of melatonin in reducing water avoidance stress-induced degeneration of the liver. Dig Dis Sci 50:738–744PubMedCrossRefGoogle Scholar
  82. 82.
    Worthington HV, Hunt LP, McCloy RF, Ubbink JB, Braganza JM (1997) A pilot study of antioxidant intake in patients with cholesterol gallstones. Nutrition 13:118–127PubMedCrossRefGoogle Scholar
  83. 83.
    Lin C, Shen T, Fu X, Zhou X (1996) The ability of bile to scavenge superoxide radicals and pigment gallstone formation in guinea pigs. HPB Surg 10:73–76PubMedCrossRefGoogle Scholar
  84. 84.
    Vagner EA, Khlebnikov VV, Terekhina NA, Palatova LF (1997) Antioxidants in the treatment of cholelithiasis patients. Vestn Khir Im II Grek 156:36–39Google Scholar
  85. 85.
    Tan DX, Poeggeler B, Reiter RJ, Chen LD, Chen S, Manchester LC, Barlow-Walden LR (1993) The pineal hormone melatonin inhibits DNA-adduct formation induced by the chemical carcinogen safrole in vivo. Cancer Lett 70:65–71PubMedCrossRefGoogle Scholar
  86. 86.
    Arteaga S, Carmona A, Luis J, Andrade-Cetto A, Cárdenas R (2005) Effect of Larrea tridentata (creosote bush) on cholesterol gallstones and bile secretion in hamsters. J Pharm Pharmacol 57:1093–1099PubMedCrossRefGoogle Scholar
  87. 87.
    Abou-Gazar H, Bedir E, Takamatsu S, Ferreira D, Khan IA (2004) Antioxidant lignans from Larrea tridentata. Phytochemistry 65:2499–2505PubMedCrossRefGoogle Scholar
  88. 88.
    Thistle JL, Cleary PA, Lachin JM, Tyor MP, Hersh T (1984) The natural history of cholelithiasis: the national cooperative gallstone study. Ann Intern Med 101:171–175PubMedGoogle Scholar
  89. 89.
    Lawrentschuk N, Hewitt PM, Pritchard MG (2003) Elective laparoscopic cholecystectomy: implications of prolonged waiting times for surgery. ANZ J Surg 73:890–893PubMedCrossRefGoogle Scholar
  90. 90.
    Olson DW, de Gara CJ (2002) How long do patients wait for elective general surgery? Can J Surg 45:31–33Google Scholar
  91. 91.
    Rutledge D, Jones D, Rege R (2000) Consequences of delay in surgical treatment of biliary disease. Am J Surg 180:466–469PubMedCrossRefGoogle Scholar
  92. 92.
    Salman B, Yuksel O, Irkorucu O, Akyurek N, Tezcaner T, Dogan I, Erdem O, Tatlicioglu E (2005) Urgent laparoscopic cholecystectomy is the best management for biliary colic: a prospective randomized study of 75 cases. Dig Surg 22:95–99PubMedCrossRefGoogle Scholar
  93. 93.
    Sauerbruch T, Delius M, Paumgartner G, Holl J, Wess O, Weber W, Hepp W, Brendel W (1986) Fragmentation of gallstones by extracorporeal shock waves. N Engl J Med 314:818–822PubMedCrossRefGoogle Scholar
  94. 94.
    Villanova N, Bazzoli F, Taroni F, Frabboni R, Mazzella G, Festi D, Barbara L, Roda E (1989) Gallstone recurrence after successful oral bile acid treatment: a 12 year follow-up study and evaluation of long term postdissolution treatment. Gastroenterology 97:726–731PubMedGoogle Scholar
  95. 95.
    Sackmann M, Niller H, Klueppelberg U, von Ritter C, Pauletzki J, Holl J, Berr F, Neubrand M, Sauerbruch T, Paumgartner G (1994) Gallstone recurrence after shock-wave therapy. Gastroenterology 106:225–230PubMedGoogle Scholar
  96. 96.
    Berr F, Mayer M, Sackmann MF, Sauerbruch T, Holl J, Paumgartner G (1994) Pathogenic factors in early recurrence of cholesterol gallstones. Gastroenterology 106:215–224PubMedGoogle Scholar
  97. 97.
    Tint GS, Salen G, Colalillo A, Graber D, Verga D, Speck J, Shefer S (1982) Ursodeoxycholic acid: a safe and effective agent for dissolving cholesterol gallstones. Ann Intern Med 97:351–356PubMedGoogle Scholar
  98. 98.
    Bachrach WH, Hofmann AF (1982) Ursodeoxycholic acid in the treatment of cholesterol cholelithiasis. Part I. Dig Dis Sci 27:737–761PubMedCrossRefGoogle Scholar
  99. 99.
    Meredith TJ, Williams GV, Maton PN, Murphy GM, Saxton HM, Dowling RH (1982) Retrospective comparison of ‘Cheno’ and ‘Urso’ in the medical treatment of gallstones. Gut 23:382–389PubMedCrossRefGoogle Scholar
  100. 100.
    Tomida S, Abei M, Yamaguchi T, Matsuzaki Y, Shoda J, Tanaka N, Osuga T (1999) Long-term ursodeoxycholic acid therapy is associated with reduced risk of biliary pain and acute cholecystitis in patients with gallbladder stones: a cohort analysis. Hepatology 30:6–13PubMedCrossRefGoogle Scholar
  101. 101.
    Venneman NG, Besselink MG, Keulemans YC, Vanberge-Henegouwen GP, Boermeester MA, Broeders IA, Go PM, van Erpecum KJ (2006) Ursodeoxycholic acid exerts no beneficial effect in patients with symptomatic gallstones awaiting cholecystectomy. Hepatology 43:1276–1283PubMedCrossRefGoogle Scholar
  102. 102.
    Thistle JL, Larusso NF, Hofmann AF, Turcotte J, Carlson GL, Ott BJ (1982) Differing effects of ursodeoxycholic or chenodeoxycholic acid on biliary cholesterol saturation and bile acid metabolism in man. A dose-response study. Dig Dis Sci 27:161–168PubMedCrossRefGoogle Scholar
  103. 103.
    Thistle JL, Hofmann AF, Yu PY, Ott B (1977) Effect of varying doses of chenodeoxycholic acid on bile lipid and biliary bile acid composition in gallstone patients: a dose-response study. Am J Dig Dis 22:1–6PubMedCrossRefGoogle Scholar
  104. 104.
    Schoenfield LJ, Marks JW (1993) Oral and contact dissolution of gallstones. Am J Surg 165:427–430PubMedCrossRefGoogle Scholar
  105. 105.
    Danzinger RG, Hofmann AF, Schoenfield LJ, Thistle JL (1972) Dissolution of cholesterol gallstones by chenodeoxycholic acid. N Engl J Med 286:1–8PubMedGoogle Scholar
  106. 106.
    Anderson HB (1914) The medical treatment of cholelithiasis. Can Med Assoc J 4:1–8PubMedGoogle Scholar
  107. 107.
    Lee S (2004) Gallstones: how do we translate an old story into future therapy? Nat Clin Pract Gastroenterol Hepatol 1:2–3PubMedCrossRefGoogle Scholar
  108. 108.
    Chen Q, Amaral J, Biancani P, Behar J (1999) Excess membrane cholesterol alters human gallbladder muscle contractility and membrane fluidity. Gastroenterology 116:678–685PubMedCrossRefGoogle Scholar
  109. 109.
    Strasberg S (1995), Acute calculus cholecystitis. In: Berk JE (ed) Gastroenterology, 5th edn. Saunders, Philadelphia, pp 2635–2664Google Scholar
  110. 110.
    Womack NA, Bricker EM (1944) Pathogenesis of cholecystitis. Arch Surg 44:658Google Scholar
  111. 111.
    Xiao ZL, Rho AK, Biancani P, Behar J (2002) Effects of bile acids on the muscle functions of guinea pig gallbladder. Am J Physiol Gastrointest Liver Physiol 283: G87–G94PubMedGoogle Scholar
  112. 112.
    Xiao ZL, Amaral J, Biancani P, Behar J (2005) Impaired cytoprotective function of muscle in human gallbladders with cholesterol stones. Am J Physiol Gastrointest Liver Physiol 288:G525–G532PubMedCrossRefGoogle Scholar
  113. 113.
    Lane JR, Starbuck EM, Johnson AK, Fitts DA (1999) Effects of bile duct ligation and captopril on salt appetite and renin-aldosterone axis in rats. Physiol Behav 66:419–425PubMedCrossRefGoogle Scholar
  114. 114.
    Canturk NZ, Canturk Z, Ozbilim G, Yenisey C (2000) Protective effect of vitamin E on gastric mucosal injury in rats with biliary obstruction. Can J Gastroenterol 14:499–503PubMedGoogle Scholar
  115. 115.
    Montilla P, Cruz A, Padillo FJ, Tunez I, Gascon F, Munoz MC, Gomez M, Pera C (2001) Melatonin versus vitamin E as protective treatment against oxidative stress after extra-hepatic bile duct ligation in rats. J Pineal Res 31:138–144PubMedCrossRefGoogle Scholar
  116. 116.
    Polat A, Emre MH (2006) Effects of melatonin or acetylsalicylic acid on gastric oxidative stress after bile duct ligation in rats. J Gastroenterol 41:433–439PubMedCrossRefGoogle Scholar
  117. 117.
    Ohta Y, Kongo M, Kishikawa T (2003) Therapeutic effect of melatonin on cholestatic liver injury in rats with bile duct ligation. Adv Exp Med Biol 527:559–565PubMedGoogle Scholar
  118. 118.
    Ohta Y, Imai Y, Matsura T, Yamada K, Tokunaga K (2005) Successively postadministered melatonin in prevents disruption of hepatic antioxidant status with bile duct ligation. J Pineal Res 39:367–374PubMedCrossRefGoogle Scholar
  119. 119.
    Ohta Y, Kongo-Nishimura M, Imai Y, Matsura T, Kitagawa A, Yamada K. (2006) Alpha-tocopherol protects against alpha-naphthylisothiocyanate-induced hepatotoxicity in rats less effectively than melatonin. Chem Biol Interact 161:115–124PubMedCrossRefGoogle Scholar
  120. 120.
    Vitetta L, Sali A, Little P, Mrazek L (2000) Gallstones and gall bladder carcinoma. Aust N Z J Surg 70:667–673CrossRefGoogle Scholar
  121. 121.
    Nervi F, Duarte I, Gomez G, Rodriguez G, Del Pino G, Ferrerio O, Covarrubias C, Valdivieso V, Torres MI, Urzua A (1988) Frequency of gallbladder cancer in Chile, a high-risk area. Int J Cancer 41:657–660PubMedCrossRefGoogle Scholar
  122. 122.
    Serra I, Diehl AK (2002) Number and size of stones in patients with asymptomatic and symptomatic gallstones and gallbladder carcinoma. J Gastrointest Surg 6:272–273PubMedCrossRefGoogle Scholar
  123. 123.
    Lowenfels AB, Maisonneuve P, Boyle P, Zatonski WA (1999) Epidemiology of gallbladder cancer. Hepatogastroenterology 46:1529–1532PubMedGoogle Scholar
  124. 124.
    Lam CM, Yuen AW, Wai AC, Leung RM, Lee AY, Ng KK, Fan ST (2005) Gallbladder cancer presenting with acute cholecystitis: a population-based study. Surg Endosc 19:697–701PubMedCrossRefGoogle Scholar
  125. 125.
    Abou-Saif A, Al-Kawas FH (2002) Complications of gallstone disease: Mirizzi syndrome, cholecystocholedochal fistula, and gallstone ileus. Am J Gastroenterol 97:249–254PubMedCrossRefGoogle Scholar
  126. 126.
    Tucker L, Tangedahl TN (1979) Manifestations of gallstone disease. Postgrad Med 66:179–180, 183–184Google Scholar
  127. 127.
    Losanoff JE, Richman BW, Jones JW (2002) Complications of gallstone disease: gallstone ileus. Am J Gastroenterol 97:1843–1844PubMedCrossRefGoogle Scholar
  128. 128.
    Centers for Disease Control and Prevention (2003) Trends in Aging—United States and worldwide. MMWR Morb Mortal Wkly Rep 52:101–104,106Google Scholar
  129. 129.
    Wang DQ (2002) Aging per se is an independent risk factor for cholesterol gallstone formation in gallstone susceptible mice. J Lipid Res 43:1950–1959PubMedCrossRefGoogle Scholar
  130. 130.
    Karasek M (2004) Melatonin, human aging, and age-related diseases. Exp Gerontol 39:1723–1729PubMedCrossRefGoogle Scholar
  131. 131.
    Karasek M, Winczyk K (2006) Melatonin in humans. J Physiol Pharmacol 57:19–39PubMedGoogle Scholar
  132. 132.
    Diehl AK, Schwesinger WH, Holleman Jr DR, Chapman JB, Kurtin WE (1994) Gallstone characteristics in Mexican Americans and non-Hispanic whites. Dig Dis Sci 39:2223–2228PubMedCrossRefGoogle Scholar
  133. 133.
    Puppala S, Dodd GD, Fowler S, Arya R, Schneider J, Farook VS, Granato R, Dyer TD, Almasy L, Jenkinson CP, Diehl AK, Stern MP, Blangero J, Duggirala R (2006) A genomewide search finds major susceptibility loci for gallbladder disease on chromosome 1 in Mexican Americans. Am J Hum Genet 78:377–392PubMedCrossRefGoogle Scholar
  134. 134.
    Mann S (2003) Melatonin for ulcerative colitis? Am J Gastroenterol 98:232–233PubMedCrossRefGoogle Scholar
  135. 135.
    Maldonado MD, Murillo-Cabezas F, Terron MP, Flores LJ, Tan DX, Manchester LC, Reiter RJ (2007) The potencial of melatonin in reducing morbidity-mortality alter craniocerebral trauma. J Pineal Res 42:1–11PubMedCrossRefGoogle Scholar
  136. 136.
    Tan DX, Manchester LC, Terron MP, Flores LJ, Reiter RJ (2007) One molecule, many derivatives: a never-ending interaction of melatonin with oxygen and reactive nitrogen species? J Pineal Res 42:28–42PubMedCrossRefGoogle Scholar
  137. 137.
    Manda K, Ueno M, Anzai K (2007) AFMK, a melatonin metabolite, attenuates X-ray-induces oxidative damageg to DNA, proteins and lipids in mice. J Pineal Res 42:386–394PubMedCrossRefGoogle Scholar
  138. 138.
    Cuzzocrea S, Reiter RJ (2002) Pharmacological actions of melatonin in acute and chronic inflammation. Curr Top Med Chem 2:153–166PubMedCrossRefGoogle Scholar
  139. 139.
    Rodriguez MI, Escamez G, Lopez LC, Lopez A, Garcia JA, Ortiz F, Acuna-Castroviejo D (2007) Chronic melatonin treatment reduces the age-dependent inflammatory process in senescence-accelerated mice. J Pineal Res 42:272–279PubMedCrossRefGoogle Scholar
  140. 140.
    Nosalova V, Zeman M, Cerna S, Novarova J, Zakalova M (2007) Protective effect of melatonin in acetic acid induces colitis in rats. J Pineal Res 42:364–370CrossRefGoogle Scholar
  141. 141.
    Gitto E, Karbownik M, Reiter RJ, Tan DX, Cuzzocrea S, Chiurazzi P, Cordaro S, Corona G, Trimarchi G, Barberi I (2001) Effects of melatonin treatment in septic newborns. Pediatr Res 50:756–760PubMedCrossRefGoogle Scholar
  142. 142.
    Gitto E, Reiter RJ, Sabatino G, Buonocore G, Romero C, Gitto P, Bugge C, Trimarchi G, Barberi J (2005) Correlation among cytokines, bronchopulmonary dysplasia and modality of ventilation in preterm newborns: improvement with melatonin treatment. J Pineal Res 39:387–393CrossRefGoogle Scholar
  143. 143.
    Gitto E, Reiter RJ, Cordaro SP, La Rosa M, Chiurazzi P, Trimanchi G, Gitto P, Calabro MP, Barberi I (2004) Oxidative and inflammatory parameters in respiratory distress syndrome of preterm newborns: beneficial effects of melatonin. Am J Perinatol 21:209–216PubMedCrossRefGoogle Scholar
  144. 144.
    Klupinska G, Poplawski T, Drzewoski J, Harasiuk A, Reiter RJ, Blasiak J, Chojnacki J (2007) Therapeutic effect of melatonin in patients with functional dyspepsia. J Clin Gastroenterol 41:270–274PubMedCrossRefGoogle Scholar
  145. 145.
    Cutando A, Gomez-Moreno G, Arana C, Escames G, Acuna-Castroviejo D (2007) Melatonin reduces oxidative stress because of tooth removal. J Pineal Res 42:419–420PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Sreedevi Koppisetti
    • 1
  • Bharat Jenigiri
    • 2
  • M. Pilar Terron
    • 1
  • Sandra Tengattini
    • 1
  • Hiroshi Tamura
    • 1
  • Luis J. Flores
    • 1
  • Dun-Xian Tan
    • 1
  • Russel J. Reiter
    • 1
  1. 1.Department of Cellular and Structural BiologyUniversity of Texas Health Science Center at San AntonioSan AntonioUSA
  2. 2.Department of Palliative CareUniversity of Texas Health Science Center at San AntonioSan AntonioUSA

Personalised recommendations