Advertisement

Digestive Diseases and Sciences

, Volume 53, Issue 9, pp 2495–2506 | Cite as

Effects of Lactobacillus salivarius 433118 on Intestinal Inflammation, Immunity Status and In vitro Colon Function in Two Mouse Models of Inflammatory Bowel Disease

  • Linda M. Feighery
  • Philip Smith
  • Liam O’Mahony
  • Padraic G. Fallon
  • David J. Brayden
Original Paper

Abstract

The probiotic, Lactobacillus salivarius subsp. salivarius 433118 (UCC118), was investigated for its potential to attenuate colitis, modulate immune responses and alter intestinal barrier dysfunction in two different mouse models of inflammatory bowel disease (IBD). Following oral treatment with UCC118, faecal microbial analysis indicated that viable intact bacteria reached the colons of interleukin (IL)-10−/− mice and dextran sodium sulphate (DSS)-treated mice. Neither prophylactic nor therapeutic UCC118 treatment significantly prevented or attenuated inflammation in either model. In all studies, the probiotic-treated mice had comparable cytokine responses as vehicle-treated animals. Mannitol permeability was increased across colonic mucosae mounted in Ussing chambers from DSS-treated mice, but not in IL-10−/− mice. However, colonic mucosae from UCC118-treated mice had unchanged transepithelial electrical resistance (TEER) values and mannitol fluxes compared to controls. In two different mouse colitis models examined under a range of histological and functional criteria, the data therefore suggest that this Lactobacillus subsp. has limited potential as a prophylactic or therapeutic treatment for inflammatory bowel disease. While several studies have shown therapeutic activity for this probiotic in mouse models of IBD, our data suggest that there are inter-study variables in formulation, study design, animal models and assessment criteria that may impact on interpretation of probiotic efficacy.

Keywords

Inflammatory bowel disease (IBD) IL-10 gene deficient mice (IL-10−/−Lactobacillus probiotics Dextran sodium sulphate Transepithelial electrical resistance Apparent permeability coefficient Mannitol fluxes 

Notes

Acknowledgements

This study was supported by the Health Research Board (Ireland), Science Foundation, Ireland, and the Irish Higher Education Authority Programme for Research in Third Level Institutions.

References

  1. 1.
    Sheil B, Shanahan F, O’Mahony L (2007) Probiotic effects on inflammatory bowel disease. J Nutr 137:819S–824SPubMedGoogle Scholar
  2. 2.
    Rolhion N, Darfeuille-Michaud A (2007) Adherent-invasive Escherichia coli in inflammatory bowel disease. Inflamm Bowel Dis May 2 [Epub ahead of print]Google Scholar
  3. 3.
    Bartlett JG (2007) Clostridium difficile: old and new observations. J Clin Gastroenterol 41(Suppl 1):S24–S29CrossRefGoogle Scholar
  4. 4.
    Mylonaki M, Rayment NB, Rampton DS, Hudspith BN, Brostoff J (2005) Molecular characterization of rectal mucosa-associated bacterial flora in inflammatory bowel disease. Inflamm Bowel Dis 11:481–487PubMedCrossRefGoogle Scholar
  5. 5.
    Giaffer MH, Holdsworth CD, Duerden BI (1991) The assessment of faecal flora in patients with inflammatory bowel disease by a simplified bacteriological technique. J Med Microbiol 35:238–243PubMedCrossRefGoogle Scholar
  6. 6.
    Sellon RK, Tonkonogy S, Schultz M, Dieleman LA, Grenther W, Balish E, Rennick DM, Sartor RB (1998) Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect Immun 66:5224–5231PubMedGoogle Scholar
  7. 7.
    O’Mahony L, McCarthy J, Kelly P, Hurley G, Luo F, Chen K, O’Sullivan GC, Kiely B, Collins JK, Shanahan F, Quigley EM (2005) Lactobacillus and Bifidobacterium in irritable bowel syndrome: symptom responses and relationship to cytokine profiles. Gastroenterology 128:541–551PubMedCrossRefGoogle Scholar
  8. 8.
    Whorwell PJ, Altringer L, Morel J, Bond Y, Charbonneau D, O’Mahony L, Kiely B, Shanahan F, Quigley EM (2006) Efficacy of an encapsulated probiotic Bifidobacterium infantis 35624 in women with irritable bowel syndrome. Am J Gastroenterol 101:1581–1590PubMedCrossRefGoogle Scholar
  9. 9.
    Kajander K, Hatakka K, Poussa T, Farkkila M, Korpela R (2005) A probiotic mixture alleviates symptoms in irritable bowel syndrome patients: a controlled 6-month intervention. Aliment Pharmacol Ther 22:387–394PubMedCrossRefGoogle Scholar
  10. 10.
    Rolfe VE, Fortun PJ, Hawkey CJ, Bath-Hextall F (2006) Probiotics for maintenance of remission in Crohn’s disease. Cochrane Database Syst Rev 4:CD004826PubMedGoogle Scholar
  11. 11.
    Macfarlane S, Furrie E, Kennedy A, Cummings JH, Macfarlane GT (2005) Mucosal bacteria in ulcerative colitis. Br J Nutr 93(Suppl 1):S67–S72PubMedCrossRefGoogle Scholar
  12. 12.
    Gionchetti P, Rizzello F, Campieri M (2002) Probiotics in gastroenterology. Curr Opin Gastroenterol 18:235–239PubMedCrossRefGoogle Scholar
  13. 13.
    Madsen KL, Doyle JS, Jewel LD, Tavernini MM, Fedorak RN (1999) Lactobacillus species prevents colitis in interleukin 10 gene-deficient mice. Gastroenterology 116:1107–1114PubMedCrossRefGoogle Scholar
  14. 14.
    O’Mahony L, Feeney M, O’Halloran S, Murphy L, Kiely B, Fitzgibbon J, Lee G, O’Sullivan G, Shanahan F, Collins JK (2001) Probiotic impact on microbial flora, inflammation and tumour development in IL-10 knockout mice. Aliment Pharmacol Ther 15:1219–1225PubMedCrossRefGoogle Scholar
  15. 15.
    McCarthy J, O’Mahony L, O’Callaghan L, Sheil B, Vaughan EE, Fitzsimons N, Fitzgibbon J, O’Sullivan GC, Kiely B, Collins JK, Shanahan F (2003) Double blind, placebo controlled trial of two probiotic strains in interleukin 10 knockout mice and mechanistic link with cytokine balance. Gut 52:975–980PubMedCrossRefGoogle Scholar
  16. 16.
    Di Giacinto C, Marinaro M, Sanchez M, Strober W, Boirivant M (2005) Probiotics ameliorate recurrent Th1-mediated murine colitis by inducing IL-10 and IL-10-dependent TGF-beta-bearing regulatory cells. J Immunol 174:3237–3246PubMedGoogle Scholar
  17. 17.
    Llopis M, Antolin M, Guarner F, Salas A, Malagelada JR (2005) Mucosal colonisation with Lactobacillus casei mitigates barrier injury induced by exposure to trinitronbenzene sulphonic acid. Gut 54:955–999PubMedCrossRefGoogle Scholar
  18. 18.
    Lamine F, Eutamene H, Fioramonti J, Bueno L, Theodorou V (2004) Colonic responses to Lactobacillus farciminis treatment in trinitrobenzene sulphonic acid-induced colitis in rats. Scand J Gastroenterol 39:1250–1258PubMedCrossRefGoogle Scholar
  19. 19.
    Peran L, Camuesco D, Comalada M, Nieto A, Concha A, Diaz-Ropero MP, Olivares M, Xaus J, Zarzuelo A, Galvez J (2005) Preventative effects of a probiotic, Lactobacillus salivarius ssp. salivarius, in the TNBS model of rat colitis. World J Gastroenterol 11:5185–5192PubMedGoogle Scholar
  20. 20.
    Peran L, Sierra S, Comalada M, Lara-Villoslada F, Bailon E, Nieto A, Concha A, Olivares M, Zarzuelo A, Xaus J, Galvez J (2007) A comparative study of the preventative effects exerted by two probiotics, Lactobacillus reuteri and Lactobacillus fermentum, in the trinitrobenzenesulfonic acid model of rat colitis. Br J Nutr 97:96–103PubMedCrossRefGoogle Scholar
  21. 21.
    Herias MV, Koninkx JF, Vos JG, Huis in’t Veld JH, van Dijk JE (2005) Probiotic effects of Lactobacillus casei on DSS-induced ulcerative colitis in mice. Int J Food Microbiol 103:143–155PubMedCrossRefGoogle Scholar
  22. 22.
    Dunne C, O’Mahony L, Murphy L, Thornton G, Morrissey D, O’Halloran S, Feeney M, Flynn S, Fitzgerald G, Daly C, Kiely B, O’Sullivan GC, Shanahan F, Collins JK (2001) In vitro selection criteria for probiotic bacteria of human origin: correlation with in vivo findings. Am J Clin Nutr 73(Suppl 2):386S–392SPubMedGoogle Scholar
  23. 23.
    Corr SC, Li Y, Riedel CU, O’Toole PW, Hill C, Gahan CG (2007) Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc Natl Acad Sci USA. 104:7617–7721. Epub 2007 Apr 24Google Scholar
  24. 24.
    May GR, Sutherland LR, Meddings JB (2003) Is small intestinal permeability really increased in relatives of patients with Crohn’s disease? Gastroenterology 104:1627–1632Google Scholar
  25. 25.
    D’Inca R, Di Leo V, Corrao G, Martines D, D’Odorico A, Mestriner C, Venturi C, Longo G, Sturniolo GC (1999) Intestinal permeability test as a predictor of clinical course in Crohn’s disease. Am J Gastroenterol 94:2956–2960PubMedGoogle Scholar
  26. 26.
    Turner JR (2006) Molecular basis of epithelial barrier regulation: from basic mechanisms to clinical application. Am J Pathol 169:1901–1909PubMedCrossRefGoogle Scholar
  27. 27.
    Clark DS (1967) Comparison of pour and surface plate methods for determination of bacterial counts. Can J Microbiol 13:1409–1412PubMedCrossRefGoogle Scholar
  28. 28.
    Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W (1993) Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75:263–274PubMedCrossRefGoogle Scholar
  29. 29.
    Melgar S, Karlsson A, Michaelsson E (2005) Acute colitis induced by dextran sulfate sodium progresses to chronicity in C57BL/6 but not in BALB/c mice: correlation between symptoms and inflammation. Am J Physiol Gastrointest Liver Physiol 288:G1328–G1338PubMedCrossRefGoogle Scholar
  30. 30.
    Smith P, Mangan NE, Walsh CM, Fallon RE, McKenzie AN, van Rooijen N, Fallon PG (2007) Infection with a helminth parasite prevents experimental colitis via a macrophage-mediated mechanism. J Immunol 178:4557–4566PubMedGoogle Scholar
  31. 31.
    Cooper HS, Murthy SN, Shah RS, Sedergran DJ (1993) Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Invest 69:238–249PubMedGoogle Scholar
  32. 32.
    Cuthbert AW (2003) Benzoquinolines and chloride secretion in murine colonic epithelium. Br J Pharmacol 138:1528–1534PubMedCrossRefGoogle Scholar
  33. 33.
    Soni J, Baird AW, O’Brien LM, McElroy M, Callanan JJ, Bassett HF, Campion D, Brayden DJ (2006) Rat, ovine and bovine Peyer’s patches mounted in horizontal diffusion chambers display sampling function. J Control Release 115:68–77PubMedCrossRefGoogle Scholar
  34. 34.
    Artursson P (1990) Epithelial transport of drugs in cell culture. I: a model for studying the passive diffusion of drugs over intestinal absorptive (Caco-2) cells. J Pharm Sci 79:476–482PubMedCrossRefGoogle Scholar
  35. 35.
    Mangan NE, van Rooijen N, McKenzie AN, Fallon PG (2006) Helminth-modified pulmonary immune response protects mice from allergen-induced airway hyperresponsiveness. J Immunol 176:138–147PubMedGoogle Scholar
  36. 36.
    Mack DR, Michail S, Wei S, McDougall L, Hollingsworth MA (1999) Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression. Am J Physiol 276:G941–G950PubMedGoogle Scholar
  37. 37.
    Isolauri E, Majamaa H, Arvola T, Rantala I, Virtanen E, Arvilommi H (1993) Lactobacillus casei strain GG reverses increased intestinal permeability induced by cow milk in suckling rats. Gastroenterology 105:1643–1650PubMedGoogle Scholar
  38. 38.
    Matsumoto S, Hara T, Hori T, Mitsuyama K, Nagaoka M, Tomiyasu N, Suzuki A, Sata M (2005) Probiotic Lactobacillus-induced improvement in murine chronic inflammatory bowel disease is associated with the down-regulation of pro-inflammatory cytokines in lamina propria mononuclear cells. Clin Exp Immunol 140:417–426PubMedCrossRefGoogle Scholar
  39. 39.
    Gaudier E, Michel C, Segain JP, Cherbut C, Hoebler C (2005) The VSL #3 probiotic mixture modifies microflora but does not heal chronic dextran-sodium sulfate-induced colitis or reinforce the mucus barrier in mice. J Nutr 135:2753–2761PubMedGoogle Scholar
  40. 40.
    Rachmilewitz D, Katakura K, Karmeli F, Hayashi T, Reinus C, Rudensky B, Akira S, Takeda K, Lee J, Takabayashi K, Raz E (2004) Toll-like receptor 9 signaling mediates the anti-inflammatory effects of probiotics in murine experimental colitis. Gastroenterology 126:520–528PubMedCrossRefGoogle Scholar
  41. 41.
    Sheil B, MacSharry J, O’Callaghan L, O’Riordan A, Waters A, Morgan J, Collins JK, O’Mahony L, Shanahan F (2006) Role of interleukin (IL-10) in probiotic-mediated immune modulation: an assessment in wild-type and IL-10 knock-out mice. Clin Exp Immunol 144:273–280PubMedCrossRefGoogle Scholar
  42. 42.
    Madsen KL, Fedorak RN, Tavernini MM, Doyle JS (2002) Normal breast milk limits the development of colitis in IL-10-deficient mice. Inflamm Bowel Dis 8:390–398PubMedCrossRefGoogle Scholar
  43. 43.
    Kilara A, Panyam D (2003) Peptides from milk proteins and their properties. Crit Rev Food Sci Nutr 43:607–633PubMedCrossRefGoogle Scholar
  44. 44.
    Garcia-Lafuente A, Antolin M, Guarner F, Crespo E, Malagelada JR (2001) Modulation of colonic barrier function by the composition of the commensal flora in the rat. Gut 48:503–507PubMedCrossRefGoogle Scholar
  45. 45.
    Byrne FR, Viney JL (2006) Mouse models of inflammatory bowel disease. Curr Opin Drug Discov Devel 9:207–217PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Linda M. Feighery
    • 1
  • Philip Smith
    • 2
  • Liam O’Mahony
    • 3
  • Padraic G. Fallon
    • 2
  • David J. Brayden
    • 1
  1. 1.School of Agriculture, Food Science and Veterinary MedicineUniversity College DublinDublinIreland
  2. 2.Institute of Molecular MedicineTrinity College Dublin, St. James’s HospitalDublinIreland
  3. 3.Alimentary Pharmabiotic CentreUniversity College Cork, National University of IrelandCorkIreland

Personalised recommendations