Digestive Diseases and Sciences

, Volume 53, Issue 7, pp 1846–1851 | Cite as

Deficiency of 6B11+ Invariant NK T-Cells in Celiac Disease

  • Randall H. Grose
  • Fiona M. Thompson
  • Adrian G. Cummins
Original Paper


Immunoregulatory NK T-cells are deficient in certain autoimmune diseases. The purpose of this study was to investigate any deficiency of immunoregulatory NK T-cells in celiac disease. NK T-cells were identified by flow cytometry with 6B11 and Vα24 markers in blood from 18 normal and 12 celiac subjects. Blood mononuclear cells were stimulated with anti-CD3/CD28 antibodies and intracellular cytokines assessed at 4 h in seven normal and eight celiac subjects. Vα24/GAPDH mRNA was quantitated in duodenal biopsies by real time PCR in 17 control and 13 celiac subjects. NK T-cells in celiac subjects were reduced to 30% of those in normal subjects. Intracellular IL-4, IL-10 and IL-13 increased significantly by 33–41% in normal subjects, but did not change in celiac subjects. Vα24/GAPDH mRNA from celiac subjects was reduced to 5% of levels in control subjects. We conclude that immunoregulatory NK T-cells are deficient in celiac disease.


Celiac disease Immunoregulatory NK T-cells 


  1. 1.
    Housely J, Asquith P, Cooke W (1969) Immune response to gluten in adult celiac disease. BMJ 2:159–161CrossRefGoogle Scholar
  2. 2.
    Ferguson A, MacDonald TT, McClure JP, Holden RJ (1975) Cell-mediated immunity to gliadin within the small-intestinal mucosa in celiac disease. Lancet 1:895–897PubMedCrossRefGoogle Scholar
  3. 3.
    Sigora K, Anand BS, Truelove SC, Ciclitara PJ, Offord RE (1976) Stimulation of lymphocytes from patients with celiac disease by a sub-fraction of gluten. Lancet 2:389–391CrossRefGoogle Scholar
  4. 4.
    Penttila IA, Gibson CE, Forrest BD, Cummins AG, LaBrooy JT (1990) Lymphocyte activation as measured by interleukin-2 receptor expression to gluten antigen in celiac disease. Immunol Cell Biol 68:155–160PubMedCrossRefGoogle Scholar
  5. 5.
    Marsh MN, Cummins AG (1993) The interactive role of mucosal T lymphocytes in intestinal growth, development and enteropathy. J Gastroenterol Hepatol 8:270–278PubMedCrossRefGoogle Scholar
  6. 6.
    Lundin KE, Scott H, Hansen T, Paulsen G, Halstensen TS, Fausa O, Thorsby E, Sollid LM (1993) Gliadin-specific, HLA-DQ (alpha*0501, beta*0201) restricted T cells isolated from the small intestinal mucosa of celiac disease patients. J Exp Med 178:187–196PubMedCrossRefGoogle Scholar
  7. 7.
    Schuppan D (2000) Current concepts of celiac disease pathogenesis. Gastroenterology 119:234–242PubMedCrossRefGoogle Scholar
  8. 8.
    Van Heel DA, West J (2006) Recent advances in celiac disease. Gut 55:1037–1046PubMedCrossRefGoogle Scholar
  9. 9.
    Dieterich W, Ehnis T, Bauer M, Donner P, Volta U, Riecken EO, Schuppan D (1997) Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat Med 3:776–778CrossRefGoogle Scholar
  10. 10.
    Molberg Ø, MacAdam SN, Korner R, Quarsten H, Kristiansen C, Madsen L, Fugger L, Scott H, Noren O, Roepstorff P, Lundin KE, Sjostrom H, Sollid LM (1998) Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived T cells in celiac disease. Nat Med 4:713–717PubMedCrossRefGoogle Scholar
  11. 11.
    Van de Wal Y, Kooy Y, van Veelen P, van Veelen P, Pena S, Mearin L, Papadopoulos G, Koning F (1998) Selective deamidation by tissue transglutaminase strongly enhances gliadin-specific T cell reactivity. J Immunol 161:1585–1588PubMedGoogle Scholar
  12. 12.
    Mowat AM, Lamont AG, Strobel S, MacKenzie S (1987) The role of antigen processing and suppressor T cells in immune responses to dietary proteins in mice. Adv Exp Med Biol 216A:709–720PubMedGoogle Scholar
  13. 13.
    Pignata C, Troncone R, Monaco G, Ciriaco M, Farris E, Carminati G, Auricchio S (1985) Impaired suppressor activity in children affected by celiac disease. Gut 26:285–290PubMedCrossRefGoogle Scholar
  14. 14.
    Corazza GR, Sarchielli P, Londei M, Frisoni M, Gasborrini G (1986) Gluten specific suppressor T cell dysfunction in celiac disease. Gut 27:392–398PubMedCrossRefGoogle Scholar
  15. 15.
    Wilson SB, Kemi SC, Patton KT Orban T, Jackson RA, Exley M, Porcelli S, Schatz DA, Atkinson MA, Balk SP, Strominger JL, Hafler DA (1998) Extreme Th1 bias of invariant Vα24JαQ T cells in type 1 diabetes. Nature 391:177–181PubMedCrossRefGoogle Scholar
  16. 16.
    Sumida T, Sakamoto A, Murata H, Makino Y, Takahashi H, Yoshida S, Nishioka K, Iwamoto I, Taniguchi M (1995) Selective reduction of T cells bearing invariant V-alpha-24J alpha-Q antigen receptor in patients with systemic sclerosis. J Exp Med 182:1163–1168PubMedCrossRefGoogle Scholar
  17. 17.
    Illes Z, Kondo T, Newcombe J Oka N, Tabira T, Yamamura T (2000) Differential expression of NK T cell V alpha 24J alpha Q invariant TCR chain in the lesions of multiple sclerosis and chronic inflammatory demyelinating polyneuropathy. J Immunol 164:4375–4381PubMedGoogle Scholar
  18. 18.
    Baxter AG, Kinder SJ, Hammond KJ, Scollay R, Godfrey DI (1997) Association between alpha beta TCR + CD4- CD8- T cell deficiency and IDDM in NOD/Lt mice. Diabetes 46:572–582PubMedCrossRefGoogle Scholar
  19. 19.
    Godfrey DI, Hammond KJL, Poulton LD, Smyth MJ, Baxter AG (2000) NKT cells: facts, functions and fallacies. Immunol Today 21:573–583PubMedCrossRefGoogle Scholar
  20. 20.
    Tahir SM, Cheng O, Shaulov A, Koezuka Y, Bubley GJ, Wilson SB, Balk SP, Exley MA (2001) Loss of IFN-γ production by invariant NK T cells in advanced cancer. J Immunol 167:4046–4050PubMedGoogle Scholar
  21. 21.
    Mendiratta SK, Martin WD, Hong S, Boesteanu A, Joyce S, Van Kaer L (1997) CD1d1 mutant mice are deficient in natural T cells that promptly produce IL-4. Immunity 6:469–477PubMedCrossRefGoogle Scholar
  22. 22.
    Singh N, Hong S, Scherer DC, Serizawa I, Burdin N, Kronenberg M, Koezuka Y, Van Kaer L (1999) Activation of NK T cells by CD1d and α-galactosylceramide directs conventional T cells to the acquisition of a Th2 phenotype. J Immunol 163:2373–2377PubMedGoogle Scholar
  23. 23.
    Van der Vliet HJ, von Blomberg BM, Nishi N, Reijm M, Voskuyl AE, van Bodegraven AA, Polman CH, Rustemeyer T, Lips P, van den Eertwegh AJ, Giaccone G, Scheper RJ, Pinedo HM (2001) Circulating V(alpha24+) Vbeta11+ NKT cell numbers are decreased in a wide variety of diseases that are characterized by autoreactive tissue damage. Clin Immunol 100:144–148PubMedCrossRefGoogle Scholar
  24. 24.
    Matsuda JL, Naidenko OV, Gapin L, Nakayama T, Taniguchi M, Wang CR, Koezuka Y, Kronenberg M (2000) Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J Exp Med 192:741–754PubMedCrossRefGoogle Scholar
  25. 25.
    Grose RH, Thompson FM, Baxter AG, Pellucini DG, Cummins AG (2007) Deficiency of invariant NK T cells in Crohn’s disease and ulcerative colitis. Dig Dis Sci 52:1415–1422PubMedCrossRefGoogle Scholar
  26. 26.
    Yoshimoto T, Paul WE (2004) CD4pos NK1.1pos T cells promptly produce interleukin 4 in response to in vivo challenge with anti-CD3. J Exp Med 179:1285–1295CrossRefGoogle Scholar
  27. 27.
    Wilson SB, Kent SC, Horton HF, Hill AA, Bollyky PL, Hafler DA, Strominger JL, Byrne MC (2000) Multiple differences in gene expression in regulatory Vα24JαQ T cells from identical twins discordant for type 1 diabetes. Proc Natl Acad Sci USA 97:7411–7416PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Randall H. Grose
    • 1
  • Fiona M. Thompson
    • 1
  • Adrian G. Cummins
    • 1
  1. 1.Department of Gastroenterology and HepatologyThe Queen Elizabeth Hospital, University of AdelaideWoodville SouthAustralia

Personalised recommendations