Digestive Diseases and Sciences

, Volume 52, Issue 8, pp 1783–1789

CARD15 Status and Familial Predisposition for Crohn's Disease and Colonic Gene Expression

  • Claudio Csillag
  • Ole Haagen Nielsen
  • Rehannah Borup
  • Jørgen Olsen
  • Jacob Tveiten Bjerrum
  • Finn Cilius Nielsen
Original Paper


Familial disposition and mutations in the Caspase Recruitment Domain 15 (CARD15) have been associated with an increased risk for Crohn's disease (CD). This study investigated whether these risk factors correlate with colonic gene expression profiles generated by DNA-microarray technology. Tissue specimens from descending colon were obtained during colonoscopy from 45 CD patients (18 from areas with inflammation and 27 from noninflamed areas). Gene profiling analysis was performed using the Human Genome U133 Plus 2.0 GeneChip Array. Patients were classified according to their CARD15 status. Hybridization data were analyzed with dChip software. Nine patients with either one or two CARD15 mutations had no differentially expressed genes, compared to 36 patients with wild- type CARD15. There was only one differentially expressed EST between 8 patients who had familial disposition for inflammatory bowel disease (IBD) and 36 who did not, but hierarchical cluster analysis did not show group homogeneity. We conclude that gene expression profiling of mucosal biopsies from the descending colon of patients with CD could not be correlated with CARD15 status or with familial disposition for IBD.


CARD15 mutations Crohn's disease Familial disposition Microarray 


  1. 1.
    Hanauer SB (2006) Inflammatory bowel disease: epidemiology, pathogenesis, and therapeutic opportunities. Inflamm Bowel Dis 12(Suppl 1):S3–S9PubMedCrossRefGoogle Scholar
  2. 2.
    Ott SJ, Musfeldt M, Wenderoth DF, et al. (2004) Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut 53:685–693PubMedCrossRefGoogle Scholar
  3. 3.
    Swidsinski A, Ladhoff A, Pernthaler A, et al. (2002) Mucosal flora in inflammatory bowel disease. Gastroenterology 122:44–54PubMedCrossRefGoogle Scholar
  4. 4.
    Darfeuille-Michaud A, Boudeau J, Bulois P, et al. (2004) High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn's disease. Gastroenterology 127:412–421PubMedCrossRefGoogle Scholar
  5. 5.
    Seksik P, Rigottier-Gois L, Gramet G, et al. (2003) Alterations of the dominant faecal bacterial groups in patients with Crohn's disease of the colon. Gut 52:237–242PubMedCrossRefGoogle Scholar
  6. 6.
    Sokol H, Seksik P, Rigottier-Gois L, et al. (2006) Specificities of the fecal microbiota in inflammatory bowel disease. Inflamm Bowel Dis 12:106–111PubMedCrossRefGoogle Scholar
  7. 7.
    Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI (2001) Molecular analysis of commensal host-microbial relationships in the intestine. Science 291:881–884PubMedCrossRefGoogle Scholar
  8. 8.
    Nielsen SE, Nielsen OH, Vainer B, Claesson MH (2002) Inflammatory bowel disease—Do microorganisms play a role? Ugeskr Laeger 164:5947–5950PubMedGoogle Scholar
  9. 9.
    Mathew CG, Lewis CM (2004) Genetics of inflammatory bowel disease: progress and prospects. Hum Mol Genet 13(Spec. No. 1):R161–R168PubMedCrossRefGoogle Scholar
  10. 10.
    Hugot JP, Chamaillard M, Zouali H, et al. (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411:599–603PubMedCrossRefGoogle Scholar
  11. 11.
    Ogura Y, Bonen DK, Inohara N, et al. (2001) A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 411:603–606PubMedCrossRefGoogle Scholar
  12. 12.
    Cuthbert AP, Fisher SA, Mirza MM, et al. (2002) The contribution of NOD2 gene mutations to the risk and site of disease in inflammatory bowel disease. Gastroenterology 122:867–874PubMedCrossRefGoogle Scholar
  13. 13.
    Vermeire S, Wild G, Kocher K, et al. (2002) CARD15 genetic variation in a Quebec population: prevalence, genotype-phenotype relationship, and haplotype structure. Am J Hum Genet 71:74–83PubMedCrossRefGoogle Scholar
  14. 14.
    Hampe J, Grebe J, Nikolaus S, et al. (2002) Association of NOD2 (CARD 15) genotype with clinical course of Crohn's disease: a cohort study. Lancet 359:1661–1665PubMedCrossRefGoogle Scholar
  15. 15.
    Alvarez-Lobos M, Arostegui JI, Sans M, et al. (2005) Crohn's disease patients carrying Nod2/CARD15 gene variants have an increased and early need for first surgery due to stricturing disease and higher rate of surgical recurrence. Ann Surg 242:693–700PubMedCrossRefGoogle Scholar
  16. 16.
    Russell RK, Drummond HE, Nimmo EE, et al. (2005) Genotype-phenotype analysis in childhood-onset Crohn's disease: NOD2/CARD15 variants consistently predict phenotypic characteristics of severe disease. Inflamm Bowel Dis 11:955–964PubMedCrossRefGoogle Scholar
  17. 17.
    http://www.wma.net/e/policy/b3.htmGoogle Scholar
  18. 18.
    Ahmad T, Armuzzi A, Bunce M, et al. (2002) The molecular classification of the clinical manifestations of Crohn's disease. Gastroenterology 122:854–866PubMedCrossRefGoogle Scholar
  19. 19.
    Abreu MT, Taylor KD, Lin YC, et al. (2002) Mutations in NOD2 are associated with fibrostenosing disease in patients with Crohn's disease. Gastroenterology 123:679–688PubMedCrossRefGoogle Scholar
  20. 20.
    Lesage S, Zouali H, Cezard JP, et al. (2002) CARD15/NOD2 mutational analysis and genotype-phenotype correlation in 612 patients with inflammatory bowel disease. Am J Hum Genet 70:845–857PubMedCrossRefGoogle Scholar
  21. 21.
    Barcelo-Batllori S, Andre M, Servis C, et al. (2002) Proteomic analysis of cytokine induced proteins in human intestinal epithelial cells: implications for inflammatory bowel diseases. Proteomics 2:551–560PubMedCrossRefGoogle Scholar
  22. 22.
    Langmann T, Moehle C, Mauerer R, et al. (2004) Loss of detoxification in inflammatory bowel disease: dysregulation of pregnane X receptor target genes. Gastroenterology 127:26–40PubMedCrossRefGoogle Scholar
  23. 23.
    Li J, Moran T, Swanson E, et al. (2004) Regulation of IL-8 and IL-1beta expression in Crohn's disease associated NOD2/CARD15 mutations. Hum Mol Genet 13:1715–1725PubMedCrossRefGoogle Scholar
  24. 24.
    Dooley TP, Curto EV, Reddy SP, et al. (2004) Regulation of gene expression in inflammatory bowel disease and correlation with IBD drugs: screening by DNA microarrays. Inflamm Bowel Dis 10:1–14PubMedCrossRefGoogle Scholar
  25. 25.
    Uthoff SM, Eichenberger MR, Lewis RK, et al. (2001) Identification of candidate genes in ulcerative colitis and Crohn's disease using cDNA array technology. Int J Oncol 19:803–810PubMedGoogle Scholar
  26. 26.
    Lawrance IC, Fiocchi C, Chakravarti S (2001) Ulcerative colitis and Crohn's disease: distinctive gene expression profiles and novel susceptibility candidate genes. Hum Mol Genet 10:445–456PubMedCrossRefGoogle Scholar
  27. 27.
    Dieckgraefe BK, Stenson WF, Korzenik JR, Swanson PE, Harrington CA (2000) Analysis of mucosal gene expression in inflammatory bowel disease by parallel oligonucleotide arrays. Physiol Genomics 4:1–11PubMedGoogle Scholar
  28. 28.
    Zeng H, Carlson AQ, Guo Y, et al. (2003) Flagellin is the major proinflammatory determinant of enteropathogenic Salmonella. J Immunol 171:3668–3674PubMedGoogle Scholar
  29. 29.
    Fukushima K, Ogawa H, Takahashi K, et al. (2003) Non-pathogenic bacteria modulate colonic epithelial gene expression in germ-free mice. Scand J Gastroenterol 38:626–634PubMedCrossRefGoogle Scholar
  30. 30.
    Ogawa H, Fukushima K, Naito H, et al. (2003) Increased expression of HIP/PAP and regenerating gene III in human inflammatory bowel disease and a murine bacterial reconstitution model. Inflamm Bowel Dis 9:162–170PubMedCrossRefGoogle Scholar
  31. 31.
    Csillag C, Nielsen OH, Borup R, Nielsen FC (2005) Microarrays and Crohn's disease: collecting reliable information. Scand J Gastroenterol 40:369–377PubMedGoogle Scholar
  32. 32.
    Glebov OK, Rodriguez LM, Nakahara K, et al. (2003) Distinguishing right from left colon by the pattern of gene expression. Cancer Epidemiol Biomarkers Prev 12:755–762PubMedGoogle Scholar
  33. 33.
    Distler P, Holt PR (1997) Are right- and left-sided colon neoplasms distinct tumors? Dig Dis 15:302–311PubMedCrossRefGoogle Scholar
  34. 34.
    Munkholm P, Langholz E, Nielsen OH, Kreiner S, Binder V (1992) Incidence and prevalence of Crohn's disease in the county of Copenhagen, 1962–87: a sixfold increase in incidence. Scand J Gastroenterol 27:609–614PubMedGoogle Scholar
  35. 35.
    Podolsky DK (2002) Inflammatory bowel disease. N Engl J Med 347:417–429PubMedCrossRefGoogle Scholar
  36. 36.
    Gasche C, Scholmerich J, Brynskov J, et al. (2000) A simple classification of Crohn's disease: report of the Working Party for the World Congresses of Gastroenterology, Vienna 1998. Inflamm Bowel Dis 6:8–15PubMedCrossRefGoogle Scholar
  37. 37.
    Wei C, Li J, Bumgarner RE (2004) Sample size for detecting differentially expressed genes in microarray experiments. BMC Genomics 5:87PubMedCrossRefGoogle Scholar
  38. 38.
    Day D, Jass J, Price A, et al. (2003) Morson and Dawson's gastrointestinal pathology. 4th ed. Blackwell Science, Oxford, UK, pp 505–507Google Scholar
  39. 39.
    Chomczynski P (1993) A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques 15:532–537PubMedGoogle Scholar
  40. 40.
    Li C, Wong WH (2001) Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci USA 98:31–36PubMedCrossRefGoogle Scholar
  41. 41.
    WFDC1. http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id= 605322Google Scholar
  42. 42.
    IL1R1. http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id= 147810Google Scholar
  43. 43.
    Bullinger L, Valk PJ (2005) Gene expression profiling in acute myeloid leukemia. J Clin Oncol 23:6296–6305PubMedCrossRefGoogle Scholar
  44. 44.
    Catalano A, Iland H (2005) Molecular biology of lymphoma in the microarray era. Pathology 37:508–522PubMedCrossRefGoogle Scholar
  45. 45.
    Rosenwald A, Staudt LM (2002) Clinical translation of gene expression profiling in lymphomas and leukemias. Semin Oncol 29:258–263PubMedCrossRefGoogle Scholar
  46. 46.
    Morgensztern D, Lossos IS (2005) Molecular prognostic factors in diffuse large B-cell lymphoma. Curr Treat Options Oncol 6:269–277PubMedGoogle Scholar
  47. 47.
    Valk PJM, Verhaak RGW, Beijen MA, et al. (2004) Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 350:1617–1628PubMedCrossRefGoogle Scholar
  48. 48.
    Bullinger L, Dohner K, Bair E, et al. (2004) Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med 350:1605–1616PubMedCrossRefGoogle Scholar
  49. 49.
    van’t Veer LJ, Dai H, van de Vijver MJ, et al. (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536PubMedCrossRefGoogle Scholar
  50. 50.
    van de Vijver MJ, He YD, van't Veer LJ, et al. (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009PubMedCrossRefGoogle Scholar
  51. 51.
    Bleharski JR, Li H, Meinken C, et al. (2003) Use of genetic profiling in leprosy to discriminate clinical forms of the disease. Science 301:1527–1530PubMedCrossRefGoogle Scholar
  52. 52.
    Mariadason JM, Arango D, Augenlicht LH (2004) Customizing chemotherapy for colon cancer: the potential of gene expression profiling. Drug Resist Updat 7:209–218PubMedCrossRefGoogle Scholar
  53. 53.
    Pickard KM, Bremner AR, Gordon JN, MacDonald TT (2004) Microbial-gut interactions in health and disease. Immune responses. Best Pract Res Clin Gastroenterol 18:271–285PubMedCrossRefGoogle Scholar
  54. 54.
    Sansonetti PJ (2004) War and peace at mucosal surfaces. Nat Rev Immunol 4:953–964PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Claudio Csillag
    • 1
  • Ole Haagen Nielsen
    • 1
  • Rehannah Borup
    • 2
  • Jørgen Olsen
    • 3
  • Jacob Tveiten Bjerrum
    • 1
  • Finn Cilius Nielsen
    • 2
  1. 1.Department of Gastroenterology CHerlev Hospital, University of Copenhagen, Herlev RingvejHerlevDenmark
  2. 2.Department of Clinical BiochemistryCore Unit for Microarray Analyses, Rigshospitalet, University of CopenhagenCopenhagenDenmark
  3. 3.Institute of Medical Biochemistry and GeneticsUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations