Digestive Diseases and Sciences

, Volume 52, Issue 8, pp 2006–2014 | Cite as

Protective Effect of Soy Isoflavones and Activity Levels of Plasma Paraoxonase and Arylesterase in the Experimental Nonalcoholic Steatohepatitis Model

  • Bilal Ustundag
  • Ibrahim Halil Bahcecioglu
  • Kazım Sahin
  • Sevda Duzgun
  • Suleyman Koca
  • Funda Gulcu
  • Ibrahim Hanifi Ozercan
Original Paper


Nonalcoholic steatohepatitis (NASH) is characterized by diffuse fatty infiltration in the liver and ballooning degeneration and inflammation in hepatocytes. We aimed to study the protective effect of soy isoflavones on experimental NASH and their effects on plasma paraoxanese and arylesterase levels in rats. Twenty-eight male rats were divided into four groups: Group 1 (n=7) received an isocaloric normal diet for 8 weeks, Group 2 (n=7) was fed an isocaloric basal diet plus oral soy isoflavone for 8 weeks (100 mg/kg in diet), Group 3 (n=7) received a special diet that was methionine and choline deficient (MCD) and rich in fat for 8 weeks, and Group 4 (n=7) was fed a special diet that was MCD and rich in fat plus oral soy isoflavone for 8 weeks (100 mg/kg in diet). Blood samples were collected to measure plasma malondialdehyde (MDA), paraoxanese, and arylesterase and biochemical parameters. Tissue samples were duly taken for histopathological examination and measurement of tissue MDA levels. Plasma MDA levels were higher in Group 3 than in Groups 1, 2, and 4 (P <0.01, P <0.05, and P <0.05 respectively). Liver tissue MDA levels were also significantly higher in Group 3 compared to Groups 1, 2, and 4 (P <0.001, P <0.001, and P <0.05 respectively). A significant decrease was found in the plasma and liver tissue MDA levels in Group 4 compared to Group 3 (P <0.05 and P <0.05, respectively). The activity levels of plasma paraoxanase and arylesterase were significantly higher in Group 2 than in Groups 1 and 3 (P <0.05 and P <0.01, respectively). Also, the plasma paraoxanase and arylesterase levels were significantly higher in Group 4 compared to Groups 1 and 3 (P <0.05 and P <0.01, respectively). A significant reduction was observed in Group 4 in steatosis, inflammation, necrosis, and fibrosis compared to Group 3 (P <0.05 for each). We conclude that soy isoflavones seem to be effective in preventing liver damage by decreasing lipid peroxidation in the NASH model induced by a MCD diet. They stimulate and increase the activity of the antioxidative paraoxanase enyzme while decreasing the total cholesterol and triglyceride levels.


Nonalcoholic steatohepatitis Paraoxonase Arylesterase Soy isoflavone Methionine- and choline-deficient diet 


  1. 1.
    Diehl AM (1999) Nonalcoholic steatohepatitis. Semin Liver Dis 19(2):221–229PubMedCrossRefGoogle Scholar
  2. 2.
    Koteish A, Mae Diehl A (2002) Animal models of steatohepatitis. Best Pract Res Clin Gastroenterol 16(5):679–690PubMedCrossRefGoogle Scholar
  3. 3.
    Chitturi S, Farrell GC (2001) Etiopathogenesis of nonalcoholic steatohepatitis. Semin Liver Dis 21(1):27–41PubMedCrossRefGoogle Scholar
  4. 4.
    Hensley K, Kotake Y, Sang H, Pye QN, Wallis GL, Kolker LM, Tabatabaie T, Stewart CA, Konishi Y, Nakae D, Floyd RA (2000) Dietary choline restriction causes complex I dysfunction and increased H2O2 generation in liver mitochondria. Carcinogenesis 21(5):983–989PubMedCrossRefGoogle Scholar
  5. 5.
    Diehl AM (2000) Cytokine regulation of liver injury and repair. Immunol Rev 174:160–171PubMedCrossRefGoogle Scholar
  6. 6.
    Hruszkewycz AM (1998) Evidence for mitochondrial DNA dmage by lipid peroxidation. Biochem Biophys Res Commun 153:191–197CrossRefGoogle Scholar
  7. 7.
    Parola M, Pinzani M, Casini A, Albano E, Poli G, Gentilini A, Gentilini P, Dianzani MU (1993) Stimulation of lipid peroxidation or 4-hydroxynonenal treatment increases procollagen alpha 1 (I) gene expression in human liver fat-storing cells. Biochem Biophys Res Commun 194:1044–1050PubMedCrossRefGoogle Scholar
  8. 8.
    George J, Pera N, Phung N, Leclercq I, Yun Hou J, Farrell G (2003) Lipid peroxidation, stellate cell activation and hepatic fibrogenesis in a rat model of chronic steatohepatitis. J Hepatol 39:756–764PubMedCrossRefGoogle Scholar
  9. 9.
    Kirsch R, Clarkson V, Shephard EG, Marais DA, Jaffer MA, Woodburne VE, Kirsch RE, de Hall PL (2003) Rodent nutritional model of non-alcoholic steatohepatitis: species, strain and sex difference studies. J Gastroenterol Hepatol 18:1272–1282PubMedCrossRefGoogle Scholar
  10. 10.
    Martucci CP, Fishman J (1993) P450 enzymes of estrogen metabolism. Pharmacol Ther 57(2–3):237–257PubMedCrossRefGoogle Scholar
  11. 11.
    Kulling SE, Lehmann L, Metzler M (2002) Oxidative metabolism and genotoxic potential of major isoflavone phytoestrogens. J Chromotogr 777:211–218CrossRefGoogle Scholar
  12. 12.
    Anila L, Vijayalakshmi NR (2003) Antioxidant action of flavonoids from Mangifera indica and Emblica officinialis in hypercholesterolmic rats. Food Chem 83:569–574CrossRefGoogle Scholar
  13. 13.
    Choi C, Hyeyeon C, Park J, Song Y (2003) Supressive effects of genistein on oxidative stres and NF kB activation in RAW 264.7 macrophages. Biosci Biotechnol Biochem 67(9)1916–1922PubMedCrossRefGoogle Scholar
  14. 14.
    Rice Evans CA, Miller NJ, Bolwell PG, Bramley PM, Pridham JB (1995) The relative antioxidant activities of plant derived polyphenolic flavonoids. Free Radical Res 22:375–383Google Scholar
  15. 15.
    Abad MJ, Bermejo P, Willar A (1995) The activity of flavonoids extracted from Tnacetum microphylumm DC (Compositae) on soybean lipoxygenase and prostaglandin synthetase. Gen Pharmacol 26:815–819PubMedCrossRefGoogle Scholar
  16. 16.
    Robak J, Gryglewsky RJ (1996) Bioactivity of flavonoids. Polish J Pharmacol Pharm 48:555–564Google Scholar
  17. 17.
    Wiseman H, O'Reilly JD, Adlercreutz H, Mallet AI, Bowey EA, Rowlland IR, Sanders TA (2000) Isoflavone phytoestrogens consumed in soy decrease F (2)-isoprostane concentrations and increase resistance of low-density lipoprotein to oxidation in humans. Am J Clin Nutr 72(2):395–400PubMedGoogle Scholar
  18. 18.
    Djuric Z, Chen G, Doerge DR, Heilbrun LK, Kucuk O (2001) Effect of soy isoflavone supplementation on markers of oxidative stress in men and women. Cancer Lett 22(1):1–6CrossRefGoogle Scholar
  19. 19.
    Demonty I, Lamrche B, Deshaies Y, Jacques H (2002) Role of soty isoflavones in the hypotrigliseridemic effect of soy protein in the rat. J Nutr Biochem 13:671–677PubMedCrossRefGoogle Scholar
  20. 20.
    Beynen AC (1990) Mode of cholesteremic action of dieatary proteins. Monogr Atheroscler 16:153–159PubMedGoogle Scholar
  21. 21.
    Sanchez A, Hubbard RW (1991) Plasma amino acids and the insulin glucagon ratio as a explanation for the dietary protein modulation of atherosclerosis. Med Hypothesis 36:27–32CrossRefGoogle Scholar
  22. 22.
    Forsyhte WA (1990) Dietary protein, cholesterol and thyroxine: a proposed mechanism. J Clin Nutr 68(Suppl):S101–S104Google Scholar
  23. 23.
    Potter SM (1998) Soy protein and cardiovascular disease: the impact of bioactive components in soy. Nutr Rev 56:231–235PubMedCrossRefGoogle Scholar
  24. 24.
    Rinella ME, Green RM (2004) The methionine-choline deficient dietary model of steatohepatitis does not exhibit insulin resistance. J Hepatol 40(1):47–51PubMedCrossRefGoogle Scholar
  25. 25.
    Yagi K (1984) Assay for blood plasma and serum. Methods Enzmol 105:328–331Google Scholar
  26. 26.
    Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipide eproxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358PubMedCrossRefGoogle Scholar
  27. 27.
    Ruiz J, Blanche H, James RW, Garin MC, Vaisse C, Charpentier G, Cohen N, Morabia A, Passa P, Froguel P (1995) Gln-Arg 192 polymorphysm of paraoxonase and coronary heart disease in y-type 2 diabetes. Lancet 346:869–872PubMedCrossRefGoogle Scholar
  28. 28.
    Juretic D, Tadjanovic M, Rekic B, Simeon Rudolf V, Reiner E, Barlicic M (2001) Serum paraoxonase actiivities in hemodialyzed uremic patients. Cohort study Croat Med J 42:146–150Google Scholar
  29. 29.
    Brunt E, Janney C, Bisceglie A, Neuschwander-Tetri BA, Bacon BR (1999) Nonalcoholic steatohepatitis; a proposal for grading and staging the histopathologic lesions. Am J Gastroenterol 94:2467–2474PubMedCrossRefGoogle Scholar
  30. 30.
    Bahcecioglu IH, Yalniz M, Ataseven H, Bulbuller N, Kececi M, Demirdag K, Ozercan I, Ustundag B (2004) TNF-alpha and leptin in experimental liver fibrosis models induced by carbon tetrachloride and by common bile duct ligation. Cell Biochem Funct 22(6):359–363PubMedCrossRefGoogle Scholar
  31. 31.
    Kirsch R, Clarkson V, Shephard EG, Marais DA, Jaffer MA, Woodburne VE, Kirsch RE, Hall PL (2003) Rodent nutritional model of non-alcoholic steatohepatitis: species, strain and sex difference studies. J Gastroenterol Hepatol 18(11):1272–1282PubMedCrossRefGoogle Scholar
  32. 32.
    Fort J, Oberti F, Pilette C, Veal N, Gallois Y, Douay O, Rousselet MC, Rosenbaum J, Cales P (1998) Antifibrotic and hemodynamic effects of the early and chronic administration of octreotide in two models of liver fibrosis in rats. Hepatology 28(6):1525–1531PubMedCrossRefGoogle Scholar
  33. 33.
    Harrison SA, Kadakia S, Lang K, Schenker S (2002) Nonalcoholic steatohepatitis: What we know in the new millenium. Am J Gastroenterol 97:2714–2724PubMedGoogle Scholar
  34. 34.
    Lee RG (1989) Nonalcoholic steatohepatitis: A study of 39 patients. Hum Pathol 20:594–598PubMedCrossRefGoogle Scholar
  35. 35.
    Day C, James O (1998) Steatohepatitis: A tale of two “hits”? Gastroenterology 114:842–845PubMedCrossRefGoogle Scholar
  36. 36.
    Lieber CS (1997) Role of oxidative stres and antioxidant therapy in alcoholic and nonalcholic liver disease. Adv Pharmacol 38:601–628PubMedCrossRefGoogle Scholar
  37. 37.
    Aviram M (1996) Interaction of oxidized low density lipoproteins and increased atherogenicty of antioxidants. Eur J Clin Chem Clin Biochem 34:599PubMedGoogle Scholar
  38. 38.
    Zhishen J, Mengencheng T, Jianmibg W (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64:555–559CrossRefGoogle Scholar
  39. 39.
    Gryglewski RJ, Korbut R, Robak J, Swies J (1987) On the mechanism of antithrombotic action of flavonoids. Biochem Pharmacol 36(3):317–322PubMedCrossRefGoogle Scholar
  40. 40.
    Lee MK, Bok SH, Jeong TS, Moon SS, Lee SE, Park YB, Choi MS (2002) Supplementation of Naringenin and its synthetic derivative alters antioxidant enzyme activities of erythrocyte and liver in high cholesterol fed rats. Biorg Med Chem 10:2239–2244CrossRefGoogle Scholar
  41. 41.
    Seo HJ, Jeong KS, Lee MK, Park YB, Jung UJ, Kim HJ, Choi MS (2003) Role of naringenin suplement in regulation of lipid and ethanol metabolism in rats. Life Sci 73:933–946PubMedCrossRefGoogle Scholar
  42. 42.
    Fuhrman B, Aviram M (2001) Flavonoids protect LDL from oxidation and attenuate atherosclerosis. Curr Opin Lipidol 12(1):41–48PubMedCrossRefGoogle Scholar
  43. 43.
    Beltowski J, Wojcicka G, Jamroz A (2003) Leptin decreases plasma paroxonase 1 activity and induces oxidative stress: the possible novel mechanism for proatherogenic effect of chronic hyperleptinemia. Atheroclerosis 170:21–29CrossRefGoogle Scholar
  44. 44.
    Beltowski J, Wojcica G, Mydlardrczyk M, Jamroz A (2002) The effect of peroxisome prolifarator activated receptors alpha (PPAR a) agonist fenofibrate on lipid peroxidation, total antioxidant capacity and plasma paraoxonase 1 (PON1) activity. J Physiol Pharmacol 53:463–475PubMedGoogle Scholar
  45. 45.
    Starkel P, Sempoux C, Leclercq I, Herin M, Deby C, Desager JP, Horsmans Y (2003) Oxidative stress, KLF6 and transforming growth factor-beta up-regulation differentiate non-alcoholic steatohepatitis progressing to fibrosis from uncomplicated steatosis in rats. J Hepatol 39(4):538–546PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science&#x002B;Business Media, Inc. 2006

Authors and Affiliations

  • Bilal Ustundag
    • 1
  • Ibrahim Halil Bahcecioglu
    • 2
  • Kazım Sahin
    • 3
  • Sevda Duzgun
    • 1
  • Suleyman Koca
    • 4
  • Funda Gulcu
    • 1
  • Ibrahim Hanifi Ozercan
    • 5
  1. 1.Department of Biochemistry and Clinical BiochemistryCollege of Medicine, Firat (Euphrates) UniversityElazigTurkey
  2. 2.Department of GastroenterologyCollege of Medicine, First (Euphrates) UniversityElazigTurkey
  3. 3.Department of Animal NutritionCollege of Veterinary Medicine, Firat (Euphrates) UniversityElazigTurkey
  4. 4.Department of Internal MedicineCollege of Medicine, Firat (Euphrates) UniversityElazigTurkey
  5. 5.Department of PathologyCollege of Medicine, Firat (Euphrates) UniversityElazigTurkey

Personalised recommendations