Digestive Diseases and Sciences

, Volume 51, Issue 11, pp 2094–2101 | Cite as

Rose Hip and Lactobacillus plantarum DSM 9843 Reduce Ischemia/Reperfusion Injury in the Mouse Colon

  • Å. Håkansson
  • C. Stene
  • A. Mihaescu
  • G. Molin
  • S. Ahrné
  • H. Thorlacius
  • B. JeppssonEmail author
Original Paper


Ischaemia/reperfusion (I/R) of the colon is an inflammatory condition that leads to tissue injury where reactive oxygen species play a central role. Rose hip is rich in biologically active polyphenols with antioxidative properties, which may be important in prevention of lipid peroxidation. L. plantarum DSM 9843 possesses enzymatic activity towards polyphenols. The objective of this study was to define the effect of oral administration of L. plantarum and rose hip in I/R injury. Administration of rose hip and L. plantarum significantly decreased MDA levels in caecum tissue and Enterobacteriaceae counts in caecum stool. A positive correlation between MDA levels and Enterobacteriaceae counts was found. The results support a synergistic/additive role of rose hip and L. plantarum in reducing lipid peroxidation. Therefore rose hip and L. plantarum may be used as a pretreatment to tissue injuries, e.g. colonic surgery, organ transplantation and vascular surgery.


Ischaemia Reperfusion Rose hip Polyphenols Lactobacilli 



Susanne Eiswohld and Diya Adawi are thanked for technical support; Jonas Björk, biostatistician, Competence Center for Clinical Research, Lund University Hospital for statistical analysis and Virgil Gadaleanu, Dept. of Pathology, Malmö University Hospital, for histological examination, are all gratefully acknowledged.


  1. 1.
    Berg RD (1999) Bacterial translocation from the gastrointestinal tract. Adv Exp Med Biol 473:11–30PubMedGoogle Scholar
  2. 2.
    Hornef MW, Wick MJ, Rhen M, Normark S (2002) Bacterial strategies for overcoming host innate and adaptive immune responses. Nature Immunol 3:1033–1040CrossRefGoogle Scholar
  3. 3.
    Carden DL, Granger DN (2000) Pathophysiology of ischaemia-reperfusion injury. J Pathol 190:255–266PubMedCrossRefGoogle Scholar
  4. 4.
    Carlos TM, Harlan JM (1994) Leukocyte endothelial adhesion molecules. Blood 84:2068–2101PubMedGoogle Scholar
  5. 5.
    Panes J, Perry M, Granger DN (1999) Leukocyte endothelial cell adhesion: avenues for therapeutic intervention. Br J Pharmacol 126:527–550CrossRefGoogle Scholar
  6. 6.
    Cetincale O, Bilgic L, Bolayirli M, Sengul R, Ayan F, Burcak G (1997) Involvement of neutrophils in ischemic injury: biochemical and histopathological investigation of the effects of FK506 on dorsal skin flaps in rats. Ann Plast Surg 39:505–515CrossRefGoogle Scholar
  7. 7.
    Weiss SJ (1989) Tissue destruction by neutrophils. N Eng J Med 320:365–376CrossRefGoogle Scholar
  8. 8.
    Matés JM, Pérez-Gómez C, Núñez de Castro I (1999) Antioxidant enzymes and human diseases. Clin Biochem 32(8):595–603PubMedCrossRefGoogle Scholar
  9. 9.
    Jovanovic SV, Steenken S, Tosic M, Marjanovic B, Simic MG (1994) Flavonoids as antioxidants. J Am Chem Soc 4846–4851Google Scholar
  10. 10.
    Daels-Rakotoarison DA, Gressier B, Trotin F, Brunet C, Luyckx M, Dine T, Bailleul F, Cazin M, Cazin J-C (2002) Effects of Rosa canina fruit extract on neutrophil respiratory burst. Phytother Res 16:157–161PubMedCrossRefGoogle Scholar
  11. 11.
    Kharazmi A, Winther K (1999) Rose hip inhibits chemotaxis and chemiluminescence of human peripheral blood neutrophils in vitro and reduces certain inflammatory parameters in vivo. Inflammopharmacology 7:377–386PubMedGoogle Scholar
  12. 12.
    Scalbert A (1991) Antimicrobial properties of tannins. Phytochemistry 30:3875–3883CrossRefGoogle Scholar
  13. 13.
    Descamps AM (1989) Microbial degradation of tannins and related compounds. In: NG Lewis, MG Paice (eds) Plant cell wall polymer biogenesis and biodegradation. Washington DC, Am Chem Soc, pp 559–566Google Scholar
  14. 14.
    Osawa R, Kuroiso K, Goto S, Shimzu A (2000) Isolation of tannin-degrading lactobacilli from humans and fermented foods. Appl Environ Microbiol 66:3093–3097PubMedCrossRefGoogle Scholar
  15. 15.
    Barthelmebs L, Divies C, Cavin J-F (2000) Knockout of the p-coumarate decarboxylase gene from Lactobacillus plantarum reveals the existence of two other inducible enzymatic activates involved in phenolic acid metabolism. Appl Environ Microbiol 66:3368–3375PubMedCrossRefGoogle Scholar
  16. 16.
    Fernandes CF, Shahani KM, Amer MA (1987) Therapeutic role of dietary lactobacilli and lactobacilli fermented dairy products. FEMS Microbiol Rev 46:343–356CrossRefGoogle Scholar
  17. 17.
    Shahani KM, Ayebo AD (1980) Role of dietary lactobacilli in gastrointestinal microecology. Am J Clin Nutr 33:2448–2457PubMedGoogle Scholar
  18. 18.
    Marteau P, Rambaud JC (1993) Potential of using lactic acid bacteria for therapy and immunomodulation in man. FEMS Microbiol Rev 12:207–220PubMedCrossRefGoogle Scholar
  19. 19.
    Mayeux PR (1997) Pathobiology of lipopolysaccharide. J Toxicol Environ Health 51:415–435PubMedCrossRefGoogle Scholar
  20. 20.
    Victor VM, De la Fuente M (2003) Several functions of immune cells in mice changed by oxidative stress caused by endotoxin. Physiol Res 52:789–796PubMedGoogle Scholar
  21. 21.
    Molin G, Jeppsson B, Ahrné S, Johansson ML, Nobaeck S, Ståhl M, Bengmark S (1993) Numerical taxonomy of Lactobacillus spp. associated with healthy and diseased mucosa of the human intestines. J Appl Bacteriol 74:314–323PubMedGoogle Scholar
  22. 22.
    Johansson ML, Molin G, Jeppsson B, Nobaek S, Ahrné S, Bengmark S (1993) Administration of different Lactobacillus strains in fermented oatmeal soap: in vivo colonization of human intestinal mucosa and effect on the indigenous flora. Appl Environ Microbiol 59:15–20PubMedGoogle Scholar
  23. 23.
    Riaz AA, Thorlacius H (2003) Oxygen radical-dependent expression of CXC chemokines regulate ischemia/reperfusion-induced leukocyte adhesion in the mouse colon. Free Radic Biol Med 35(7):782–789PubMedCrossRefGoogle Scholar
  24. 24.
    Van deer Weeij D, Berghuis JM, Lekkerkerk JEC (1972) Colonization resistance of the digestive tract of the mice during systemic antibiotic treatment. J Hyg 70(4):605–609CrossRefGoogle Scholar
  25. 25.
    Fabia R, Ar-Rajab A, Johansson ML, Andersson R, Willen R, Jeppsson B, Molin G, Bengmark S (1993) Impairment of bacterial flora in human ulcerative colitis and experimental colitis in rats. Digestion 54:248–255PubMedCrossRefGoogle Scholar
  26. 26.
    Tannock GW, Savage DC (1974) Influences of dietary and environmental stress on microbial populations in the murine gastrointestinal tract. Infect Immun 9:591–598PubMedGoogle Scholar
  27. 27.
    Fabia R, Ar-Rajab A, Johansson ML, Andersson R, Willen R, Jeppsson B, Molin G, Bengmark S (1993) The effect of exogenous administration of Lactobacillus reuteri R2LC and oat fiber on acetic acid induced colitis in the rat. Scand J Gastroenterol 28:155–162PubMedGoogle Scholar
  28. 28.
    Gorbach SL, Chang TW, Goldin B (1987) Successful treatment of relapsing C. difficile colitis with Lactobacillus GG. Lancet 2(8574):1519PubMedCrossRefGoogle Scholar
  29. 29.
    Nobaeck S, Johansson ML, Molin G, Ahrné S, Jeppsson B (2000) Alteration of intestinal microflora is associated with reduction in abdominal bloating and pain in patients with irritable bowel syndrome. Am J Gastroenterol 95:1231–1238CrossRefGoogle Scholar
  30. 30.
    Adawi D, Kasravi FB, Molin G, Jeppsson B (1997) Effect of Lactobacillus supplementation with and without arginine on liver damage and bacterial translocation in an acute liver injury model. Hepatology 25:642–647PubMedCrossRefGoogle Scholar
  31. 31.
    Brown JF, Chafee KA, Tepperman BL (1998) Role of mast cells, neutrophils and nitric oxide in endotoxin-induced damage to the neonatal rat colon. Brit J Pharmacol 123:31–38CrossRefGoogle Scholar
  32. 32.
    Mao Y, Nobaek S, Kasravi B, Adawi D, Stenram U, Molin G, Jeppsson B (1996) The effects of Lactobacillus strains and oat fiber on methotrexate-induced enterocolitis in rats. Gastroenterology 111:334–344PubMedCrossRefGoogle Scholar
  33. 33.
    Goodlad RA, Wright NA (1990) Changes in intestinal cell proliferation, absorptive capacity and structure in young, adult and old rats. J Anat 173:109–118PubMedGoogle Scholar
  34. 34.
    Imaoka A, Setoyama H, Takagi A, Matsumoto S, Umesaki Y (2004) Improvement of human faecal flora-associated mouse model for evaluation of the functional foods. J Appl Microbiol 96:656–663PubMedCrossRefGoogle Scholar
  35. 35.
    Savage DC, Dubos R, Schaedler RW (1968) The gastrointestinal epithelium and its autochthonous bacterial flora. J Exp Med 127(1):67–76PubMedCrossRefGoogle Scholar
  36. 36.
    Suau A, Bonnet R, Sutren M, Godon JJ, Gibson GR, Collins MD, Dore J (1999) Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 65:4799–4807PubMedGoogle Scholar
  37. 37.
    Wilson KH, Blictchington RB (1999) Human colonic biota studied by ribosomal DNA sequence analysis. Appl Environ Microbiol 62:2273–2278Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Å. Håkansson
    • 1
  • C. Stene
    • 2
  • A. Mihaescu
    • 2
  • G. Molin
    • 1
  • S. Ahrné
    • 1
  • H. Thorlacius
    • 2
  • B. Jeppsson
    • 2
    Email author
  1. 1.Food Hygiene, Department of Food Technology, Engineering and NutritionLund UniversityLundSweden
  2. 2.Department of SurgeryMalmö University Hospital, Lund UniversityMalmöSweden

Personalised recommendations