Digestive Diseases and Sciences

, Volume 51, Issue 8, pp 1485–1492 | Cite as

Effects of Saccharomyces boulardii on Intestinal Mucosa

  • Jean-Paul ButsEmail author
  • Nadine De Keyser
Original Paper


Saccharomyces boulardii (S. boulardii) is a non-pathogenic biotherapeutic agent, widely prescribed in a lyophilized form in many countries over the world. S. boulardii acts as a shuttle liberating effective enzymes, proteins and trophic factors during its intestinal transit that improve host immune defenses, digestion, and absorption of nutrients. In addition, S. boulardii secretes during its intestinal transit polyamines, mainly spermine and spermidine that regulate gene expression and protein synthesis. In this review, we will focus on the interactions of the yeast with the host intestinal mucosa.

Key Words

Saccharomyces boulardii Enzymes Intestinal mucosa Polyamines 



This work was supported by the Fonds de Recherche Scientifique Médicale (Grants 9.4524.91-4.511.92) and by a grant from Biocodex Laboratories, Montrouge, France.


  1. 1.
    McFarland LV, Bernasconi P (1993) Saccharomyces boulardii: A review of an innovative biotherapeutic agent. Microbiol Ecol Health Dis 6:151–171CrossRefGoogle Scholar
  2. 2.
    Elmer GW, Surawicz CM, McFarland LV (1996) Biotherapeutic agents. A neglected modality for the treatment and prevention of selected intestinal and vaginal secretions. JAMA 275:870–876Google Scholar
  3. 3.
    Surawicz CM, Elmer GW, Speelman P, McFarland LV, Chinn J, Van Belle G (1989) Prevention of antibiotic associated diarrhoea by Saccharomyces boulardii: A prospective study. Gastroenterology 96:981–988PubMedGoogle Scholar
  4. 4.
    McFarland LV, Surawicz CM, Greenberg RN, et al. (1995) Prevention of ß–lactam associated diarrhoea by Saccharomyces boulardii compared with placebo. Am J Gastroenterol 90:439–448PubMedGoogle Scholar
  5. 5.
    McFarland LV, Surawicz CM, Greenberg RN, et al. (1994) A randomized placebo-controlled trial of Saccharomyces boulardii in combination with standard antibiotics for Clostridium difficile disease. JAMA 271:1913–1918PubMedCrossRefGoogle Scholar
  6. 6.
    Surawicz CM, McFarland LV, Greenberg R, et al. (2000) The search for a better treatment for Clostridium difficile disease: Use of high-dose Vancomycin combined with Saccharomyces boulardii. Clin Infect Dis 31:1012–1017PubMedCrossRefGoogle Scholar
  7. 7.
    Buts JP, Corthier G, Delmée M (1993) Saccharomyces boulardii for Clostridium difficile-associated enterocolopathies in infants. J Pediatr Gastroenterol Nutr 16:1497–1504Google Scholar
  8. 8.
    Höchter W, Chase D, Hegenhoff G (1990) Saccharomyces boulardii in treatment of acute adult diarrhoea. Efficacy and tolerance of treatment. Münch Med Wochen 132:188–192Google Scholar
  9. 9.
    Cetina-Sauri G, Sierra Basto G (1994) Evaluation thérapeutique de Saccharomyces boulardii chez des enfants souffrant de diarrhée aiguë. Ann Pediatr 41:397–400Google Scholar
  10. 10.
    Kollaritsch H, Holst H, Grobara P, et al. (1993) Prophylaxe der Reisediarrhoë mith Saccharomyces boulardii. Forst Chr Med 111:152–156Google Scholar
  11. 11.
    Buts JP (2004) Exemple d’un médicament probiotique Saccharomyces boulardii lyophylisé. In Rambaud JC, Buts JP, Corthier G, Fourié B (eds) Flore microbienne intestinale: Physiologie et pathologie digestives. John Libbey Eurotext, Montrouge, France, pp 221–244Google Scholar
  12. 12.
    Bleichner G, Bléhaut H, Mentec H, Moyse D (1997) Sacchromyces boulardii prevents diarrhoea in critically ill tube-fed patients. A multicenter, randomized, double-blind–placebo-controlled trial. Intensive Care Med 23:517–523PubMedCrossRefGoogle Scholar
  13. 13.
    Saint-Marc T, Bléhaut H, Musial C, Touraine JL (1991) Efficacité de Saccharomyces boulardii dans le traitement des diarrhées du SIDA. Am Med Int 142:64–65Google Scholar
  14. 14.
    Guslandi M, Mezzi G, Sorghi M, Testoni PA (2000) Saccharomyces boulardii in maintenance treatment of Crohn’s disease. Dig Dis Sci 45:1462–1464PubMedCrossRefGoogle Scholar
  15. 15.
    Guslandi M, Giollo P, Testoni PA (2003) A pilot trial of Saccharomyces boulardii in ulcerative colitis. Eur J Gastroenterol Hepatol 15:697–698PubMedCrossRefGoogle Scholar
  16. 16.
    Hennequin C, Thierry A, Richard GF, et al. (2001) Microsatellite typing as a new tool for identification of Saccharomyces cerevisiae strains. J Clin Microbiol 39:551–559PubMedCrossRefGoogle Scholar
  17. 17.
    Maillée M, Van Nguyen P, Bertout S, Vaillant C, Bastide JM (2001) Genotypic study of Saccharomyces boulardii compared to the Saccharomyces sensu stricto complex species. J Mycol Med 11:19–25Google Scholar
  18. 18.
    Bergogne-Berezin E (1995) Impact écologique de l’anti-biothérapie. Place des micro-organismes de substitution dans le contrôle des diarrhées et colites associées aux antibiotiques. Press Méd 24:145–156Google Scholar
  19. 19.
    Buts JP (1999) Mechanisms of action of biotherapeutic agents. In Elmer GW, McFarland LV, Surawicz CM (eds) Biotherapeutic agents and infectious disease. Humana Pres, Totowa, NJ, pp 27–46Google Scholar
  20. 20.
    Bléhaut H, Massot J, Elmer GW, Levy RM (1989) Disposition kinetics of Saccharomyces boulardii in man and rat. Biopharm Drug Dispos 10:353–364PubMedCrossRefGoogle Scholar
  21. 21.
    Pothoulakis C, Kelly CP, Joshi MA, et al. (1993) Saccharomyces boulardii inhibits Clostridium difficile toxin A binding and enterotoxicity in rat ileum. Gastroenterology 104:1108–1115PubMedGoogle Scholar
  22. 22.
    Castagliulo I, Riegler MF, Valenick L, LaMont JT, Pothoulakis C (1999) Saccharomyces boulardii protease mediates Clostridium difficile toxin A ad B effects in human colonic mucosa. Infect Immun 67:302–307Google Scholar
  23. 23.
    Czerucka D, Roux J, Rampal P (1994) Saccharomyces boulardii inhibits secretagogue-mediated adenosine 3′,5′-cyclic monophosphate induction in intestinal cells. Gastroenterology 106:65–72PubMedGoogle Scholar
  24. 24.
    Czerucka D, Dahan S, Mograbi B, Rossi B, Rampal P (2000) Saccharomyces boulardii preserves the barrier function and modulates the signal transduction pathway induced in enteropathogenic Escherichia coli infected T84 cells. Infect Immun 68:5998–6004PubMedCrossRefGoogle Scholar
  25. 25.
    Czerucka D, Dahan S, Mograbi B, Rossi B, Rampal P (2001) Implication of mitogen-activated protein kinases in T84 cell responses to enteropathogenic Escherichia coli infection. Infect Imm 69:1298–1305CrossRefGoogle Scholar
  26. 26.
    Czerucka D, Rampal P (2002) Experimental effects of Saccharomyces on diarrhoeal pathogens. Microbes Infect 4:733–739PubMedCrossRefGoogle Scholar
  27. 27.
    Buts JP, Bernasconi P, Van Craynest MP, Maldague P, De Meyer R (1986) Response of human and rat small intestinal mucosa to oral administration of Saccharomyces boulardii. Pediatr Res 20:192–196PubMedCrossRefGoogle Scholar
  28. 28.
    Jahn HU, Ullrick R, Schneider, et al. (1996) Immunology and tropical effects of Saccharomyces boulardii on the small intestine in healthy human volunteers. Digestion 57:95–104PubMedCrossRefGoogle Scholar
  29. 29.
    Harms HK, Bertele-Harms RM, Bruer-Kleis D (1987) Enzyme substitution therapy with the yeast Saccharomyces cerevisiae in congenital sucrase isomaltase deficiency. N Engl J Med 316:1306–1309PubMedCrossRefGoogle Scholar
  30. 30.
    Buts JP, DeKeyser N, Stilmant C, Sokal EM, Marandi S (2002) Saccharomyces boulardii enhances N-terminal peptide hydrolysis in suckling rat small intestine by endoluminal release of a zinc-binding metalloprotease. Pediatr Res 51:528–534PubMedCrossRefGoogle Scholar
  31. 31.
    Buts JP, DeKeyser N, Marandi S, Hermans D, Chae YHE, Lambotte L, Chanteux H, Tulkens PM (1999) Saccharomyces boulardii upgrades cellular adaptation after proximal enterectomy in rats. Gut 45:89–96PubMedCrossRefGoogle Scholar
  32. 32.
    Marandi S, De Keyser N, Hermans D, Chae YHE, Lambotte L, Buts JP (1999) Saccharomyces boulardii upgrades cellular adaptation after proximal enterectomy in rats. Gastroenterology 116:G2382Google Scholar
  33. 33.
    Zaouche A, Loukil C, de la Gausie P, et al. (2000) Effects of oral Saccharomyces boulardii on bacterial overgrowth, translocation and intestinal adaptation after small bowel resection in rats. Scand J Gastroenterol 35:160–165PubMedCrossRefGoogle Scholar
  34. 34.
    Buts JP, Bernasconi P, Vaerman JP, Dive C (1990) Stimulation of secretory IgA and secretory component of immunoglobulins in small intestine of rats treated with Saccharomyces boulardii. Dig Dis Sci 35:251–256PubMedCrossRefGoogle Scholar
  35. 35.
    Qamar A, Aboudola S, Warny M, Michetti P, Pothoulakis C, LaMont JT, Kelly CP (2001) Saccharomyces boulardii stimulates intestinal immunoglobulin A immune response to Clostridium difficile toxin A in mice. Infect Imm 69:2762–2765CrossRefGoogle Scholar
  36. 36.
    Tabor CW, Tabor H (1984) Polyamines. Annu Rev Biochem 53:749–790PubMedCrossRefGoogle Scholar
  37. 37.
    Pegg AE, McCamm PP (1982) Polyamine metabolism and function. Am J Physiol 243:C212–C221PubMedGoogle Scholar
  38. 38.
    Pegg AE (1986) Recent advances in the biochemistry of polyamines in eukaryotes. Biochem J 243:249–262Google Scholar
  39. 39.
    Buts JP (1996) Polyamines in milk. Ann Nestlé 54:18–104Google Scholar
  40. 40.
    Wang JY, Viar MJ, McCormack SA, Johnson LR (1992) Effect of putrescine on S-adenosylmethionine decarboxylase in a small intestinal crypt cell line. Am J Physiol 263:G494–G501PubMedGoogle Scholar
  41. 41.
    Buts JP, Theys S, De Keyser N, Dive C (1989) Changes in serum and intestinal diamine oxidase (DAO) activity after proximal enterectomy in rats. Correlation of DAO activity with mucosal mass parameters. Dig Dis Sci 34:1393–1398Google Scholar
  42. 42.
    Pegg AE, Hibasami H, Matsui I, Bethell DR (1980) Formation and interconversion of putrescine and spermidine in mammalian cells. Adv Enzyme Regul 19:427–451PubMedCrossRefGoogle Scholar
  43. 43.
    Panagiotidis CA, Artandi S, Calame K, Silvertein SJ (1995) Polyamines after sequence specific DNA–protein interactions. Nucleic Acid Res 23:1800–1809PubMedCrossRefGoogle Scholar
  44. 44.
    Hampel KJ, Crosson P, Lee JS (1991) Polyamines favor DNA triplex formation at neutral pH. Biochemistry 30:4455–4459PubMedCrossRefGoogle Scholar
  45. 45.
    Person L, Holm I, Heby O (1998) Regulation of ornithine decarboxylase mRNA translation by polyamines. J Biol Chem 263:3528–3533Google Scholar
  46. 46.
    Kahana C, Nathans D (1985) Translational regulation of mammalian ornithine decarboxylase by polyamines. J Biol Chem 260:15390–15393PubMedGoogle Scholar
  47. 47.
    Buts JP, De Keyser N, De Raedemaeker L (1994) Saccharomyces boulardii enhances rat intestinal enzyme expression by endoluminal release of polyamines. Pediatr Res 36:522–527PubMedCrossRefGoogle Scholar
  48. 48.
    Buts JP, De Keyser N, Kolanowski J (1993) Maturation of villus and crypt cell functions in rat small intestine: Role of dietary polyamines. Dig Dis Sci 38:1091–1098PubMedCrossRefGoogle Scholar
  49. 49.
    Miret JJ, Solari AJ, Barderi PA, Goldemberg SH (1992) Polyamines and cell wall organisation in Saccharomyces cerevisiae. Yeast 8:1033–1041PubMedCrossRefGoogle Scholar
  50. 50.
    Buts JP, De Keyser N, De Raedemaeker L (1995) Polyamine profiles in human milk, infant, artificial formulas and semi-elemental diets. J Pediatr Gastroenterol Nutr 21:44–49PubMedCrossRefGoogle Scholar
  51. 51.
    Kelly D, King TP, Brown DS, McFadyen M (1991) Polyamine profiles of porcine milk and of intestinal tissue of pigs during suckling. Reprod Nutr Dev 31:73–80PubMedCrossRefGoogle Scholar
  52. 52.
    Bardocz S, Brown DS, Garant G, Pusztai A (1990) Luminal and basolateral polyamine uptake by rat small intestine stimulated to grow by phaseolus vulgaris pectin photohaemagglutinin in vivo. Biochem Biophys Acta 1034:46–52PubMedGoogle Scholar
  53. 53.
    Kumagaï J, Jain R, Johnson LR (1989) Characteristics of spermidine uptake by isolated rat enterocytes. Am J Physiol 256:G905–G910PubMedGoogle Scholar
  54. 54.
    Kobayashi M, Iseki K, Saitoh H, Miyazaki K (1992) Uptake characteristics of polyamines into rat intestinal brush border membrane. Biochem Biophys Acta 1105:177–183PubMedCrossRefGoogle Scholar
  55. 55.
    Dufour C, Dandrifosse G, Forget P, et al. (1988) Spermine and spermidine induce intestinal maturation in the rat. Gastroenterology 95:112–116PubMedGoogle Scholar
  56. 56.
    Bardocz S, Duguid TJ, Brown DS (1995) The importance of dietary polyamines in cell regeneration and growth. Br J Nutr 73:819–828PubMedCrossRefGoogle Scholar
  57. 57.
    Osborne DL, Seifel ER (1989) Microflora-derived polyamines modulate obstruction-induced colonic mucosal hypertrophy. Am J Physiol 256:G1049–G1057PubMedGoogle Scholar
  58. 58.
    Girard P, Pansart Y, Lorette I, Gillardin JM (2003) Dose-response relationship and mechanism of action of Saccharomyces boulardii in castor-oil-induced diarrhoea in rats. Dig Dis Sci 48:770–774PubMedCrossRefGoogle Scholar
  59. 59.
    Schneider SM, Girard-Pipau F, Filippi J, Hebuterne X, Krab K, Nano JL, Piche T, Rampal P (2002) Effects of Saccharomyces boulardii on the intestinal flora of patients on long-term enteral nutrition. Gastroenterology 122:A459 (abstract)Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Laboratory of Pediatric Gastroenterology and NutritionUnit of Pediatric Research, Université Catholique de LouvainLouvainBelgium
  2. 2.Cliniques Universitaires Saint-LucBruxellesBelgique

Personalised recommendations