Digestive Diseases and Sciences

, Volume 50, Issue 3, pp 593–600 | Cite as

Cytokine Production by Intestinal Intraepithelial Lymphocyte Subsets in Celiac Disease

  • Francisco LeÓn
  • Laura SÁnchez
  • Cristina Camarero
  • Garbiñe Roy
Article

Abstract

One of the earliest signs of mucosal immune activation in celiac disease (CD) is an increase in the intraepithelial lymphocyte (IEL) count in the small intestinal epithelium. Though most of those IELs express T cell receptor (TcR)-αβ chains, CD is characterized by an increase in TcR-γ δ+ IELs and by the loss of CD3 IELs. There is currently little evidence that these changes in IEL subset distribution are of relevance in the pathogenesis of CD. We aimed to determine the pattern of cytokine production by IEL subsets isolated from duodenal biopsy specimens from control subjects and CD patients at different stages of the disease. We quantified the capacity of IEL subsets to produce IFN-γ, TNF-α, IL-2, IL-4, and IL-10 by intracellular staining by flow cytometry. All IEL subsets studied displayed a type I cytokine profile in both CD and control subjects, with TcR-αβ+ IELs being the main IFN-γ producers. Untreated CD exhibited a trend toward a superior accumulation of IFN-γ per cell but a reduced proportion of INF-γ+ cells in vitro in association with a significantly increased apoptotic rate of IELs. IL-4 was almost undetectable in all cases and IL-10 showed a tendency to increase in treated and “silent” celiac patients. IEL subsets have a similar Th1 profile in controls and CD patients, and the superior in vitro apoptosis of IELs from CD patients may reflect their superior in vivo activation. The induction of IL-10-dependent regulatory Tr1 responses may be of potential clinical significance in this disease and merits further investigation.

Keywords:

celiac disease cytokines flow cytometry IEL IL-2 IL-10 IFN-γ TNF-α. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Savilahti E, Arato A, Verkasalo M: Intestinal γ ’ receptor bearing T lymphocytes in coeliac disease and inflammatory bowel diseases in children. Constant increase in celiac disease. Pediatr Res 28:579–581,1990PubMedGoogle Scholar
  2. 2.
    Spencer J, Isaacson PG, MacDonald TT, Thomas AJ, Walker-Smith JA: Gamma/delta T cells and the diagnosis of coeliac disease. Clin Exp Immunol 85:109–113, 1991CrossRefPubMedGoogle Scholar
  3. 3.
    Iltanen S, Holm K, Ashorn M, Ruuska T, Laippala P, Mäki M: Changing jejuna γ δ T cell receptor (TCR)-bearing intraepithelial lymphocyte density in celiac disease. Clin Exp Immunol 177:51–55, 1999Google Scholar
  4. 4.
    Spencer J, McDonald TT, Diss TC, Walker-Smith JA, Ciclitira PJ, Isaacson PG: Changes in intraepithelial lymphocyte subpopulations in coeliac disease and enteropathy associated T cell lymphoma (malignant histiocytosis of the intestine). Gut 30:339–346, 1989PubMedGoogle Scholar
  5. 5.
    Eiras P, Roldán E, Camarero C, Olivares F, Bootello A, Roy G: Flow cytometry description of a novel CD3/CD7+ intraepithelial lymphocyte subset in human duodenal biopsies: potential diagnostic value in coeliac disease. Cytometry 34:95–102, 1998PubMedGoogle Scholar
  6. 6.
    Eiras P, León F, Camarero C, Lombardía M, Roldán E, Bootello A, Roy G: Intestinal Intraepithelial Lymphocytes contain a CD3CD7+ subset expressing natural killer markers and a singular pattern of adhesion molecules. Scand J Immunol 52:1–6, 2000PubMedGoogle Scholar
  7. 7.
    Mäki M, Collin P: Coeliac disease. Lancet 349:1755–1759, 1997CrossRefPubMedGoogle Scholar
  8. 8.
    Walker-Smith JA: Celiac disease. In Pediatric Gastrointestinal Disease, 3rd ed. Walker, Durie, Hamilton, Walker-Smith, Watkins (eds). Ontario, BC Decker, 2000Google Scholar
  9. 9.
    Halstensen TS, Scott H, Fausa O, Brandtzaeg P: Gluten stimulation of coeliac mucosa in vitro induces activation (CD25) of lamina propria CD4+ T cells and macrophages but no crypt-cell hyperplasia. Scand J Immunol 38:581–590, 1993PubMedGoogle Scholar
  10. 10.
    Schuppan D: Current concepts of celiac disease pathogenesis. Gastroenterology 119:234–242, 2000PubMedGoogle Scholar
  11. 11.
    Sollid LM: Mollecular basis of celiac disease. Annu Rev Immunol 18: 53–81, 2000CrossRefPubMedGoogle Scholar
  12. 12.
    Nilsen EM, Jahnsen FL, Lundin KE, Johansen FE, Fausa O, Sollid LM, Janhsen J, Scoot H, Brandtzaeg P: Gluten induces an intestinal cytokine response strongly dominated by interferon γ in patients with celiac disease. Gastroenterology 115:551–563, 1998PubMedGoogle Scholar
  13. 13.
    March MN: Gluten sensitivity and latency: The histological background. In Common Food Intolerances 1: Epidemiology of Coeliac Disease. Dynamic Nutrition Research. Auricchio S, Visakorpi JK (eds). Basel, Karger, 1992, Vol 2, pp 142–150Google Scholar
  14. 14.
    Maiuri L, Picarelli A, Boirivant M, Coletta S, Mazzilli M, de Vincenzi M, Londei M, Auricchio S: Definition of the initial immunological modifications upon in vitro gliadin challenge in the small intestine. Gastroenterology 110:1368–1378, 1996PubMedGoogle Scholar
  15. 15.
    Halstensen TS, Brandtzaeg P: Activated T lymphocytes in the celiac lesion: non proliferative activation (CD25) of CD4+ αβ cells in the lamina propria but proliferation (Ki-67) of α/β and γ/δ cells in the epithelium. Eur J Immunol 23:505–510, 1993PubMedGoogle Scholar
  16. 16.
    Marsh MN: Studies of intestinal lymphoid tissue III. Quantitative analysis of epithelial lymphocytes in the small intestine of human control subjects and of patients with coeliac sprue. Gastroenterology 79:481–482, 1980PubMedGoogle Scholar
  17. 17.
    Camarero C, Eiras P, Asensio A, Leon F, Olivares F, Escobar, H, Roy G: Intraepithelial lymphocytes and coeliac disease: Permanent changes in CD3−/CD7+ and T cell receptor γ δ subsets studied by flow cytometry. Acta Paediatr 89:285–290, 2000PubMedGoogle Scholar
  18. 18.
    Kutlu T, Brousse N, Rambaud C, Le Deist F, Schmitz J, Cerf-Bensussan N: Number of T cell receptor (TCR) α β + but not of TCR γ δ + intraepithelial lymphocytes correlate with the grade of villous atrophy in coeliac patients in a long term normal diet. Gut 34:208–214, 1993PubMedGoogle Scholar
  19. 19.
    Marsh MN: Gluten, major histocompatibility complex, and the small intestine. Gastroenterology 102:330–354, 1992PubMedGoogle Scholar
  20. 20.
    Leon F, Camarero C, R-Pena R, Eiras P, Sanchez L, Baragaño M, Lombardía M, Bootello A, Roy G: Anti-transglutaminase IgA ELISA: Clinical potential and drawbacks in celiac disease diagnosis. Scand J Gastroenterol 8:849–853, 2001Google Scholar
  21. 21.
    Madrigal L, Lynch S, Feighery C, Weir D, Kelleher D, O’Farrelly CJ: Flow cytometry analysis of surface major histocompatibility complex class II expression on human epithelial cells prepared from small intestinal biopsies. J Immunol Methods 158:207–214, 1993PubMedGoogle Scholar
  22. 22.
    Parronchi P, Macchia D, Piccinni MP, Biswas P, Simonelli C, Maggi E, Ricci M, Ansari AA, Romagnani S: Allergen- and bacterial antigen-specific T-cell clones established from atopic donors show a different profile of cytokine production. Proc Natl Acad Sci USA 88:4538–4542, 1991PubMedGoogle Scholar
  23. 23.
    Elson LH, Nutman TB, Metcalfe DD, Prussin C: Flow cytometric analysis for cytokine production identifies T helper 1, T helper 2, and T helper 0 cells within the human CD4+ CD27 lymphocyte subpopulation. J Immunol 154:4294–4301, 1995PubMedGoogle Scholar
  24. 24.
    Jason J, Larned J: Single-cell cytokine profiles in normal humans: Comparison of flow cytometric reagents and stimulation protocols. J Immunol Methods 207:13–22, 1997PubMedGoogle Scholar
  25. 25.
    Prussin C, Metcalfe DD: Detection of intracytoplasmic cytokine using flow-cytometry and directly conjugated anti-cytokine antibodies. J Immunol Methods 188:117–128, 1995CrossRefPubMedGoogle Scholar
  26. 26.
    Nilsen EM, Lundin KEA, Krajci P, Scott H, Sollid LM, Brandtzaeg P: Gluten-specific HLA-DQ restricted T cells from the coeliac mucosa produce cytokines with a Th1 or Th0 profile dominated by interferon-γ. Gut 37:766–776, 1995PubMedGoogle Scholar
  27. 27.
    Breese E, Braegger CP, Corrigan CJ, Walker-Smith JA, MacDonald TT: Interleukin-2 and inteferon γ -secreting T cells in normal and diseased human intestinal mucosa. Immunology 78:127–131, 1993PubMedGoogle Scholar
  28. 28.
    Breese EJ, Kumar P, Farthing MJ, MacDonald TT: Interleukin-2 and interferon-γ producing cells in the lamina propria in celiac disease. Dig Dis Sci 39:2243, 1994PubMedGoogle Scholar
  29. 29.
    Kontakou M, Sturgess RP, Przemioslo RT, Limb GA, Nelufer JM, Ciclitira PJ: Detection of interferon gamma RNA in the mucosa of patients with coeliac disease by in situ hybridization. Gut 35:1037–1041, 1994PubMedGoogle Scholar
  30. 30.
    Kontakou M, Przemioslo RT, Sturgess RP, Limb GA, Ellis HJ, Day P, Ciclitira PJ: Cytokine mRNA expression in the mucosa of treated coeliac patients after wheat peptide challenge. Gut 37:52–57, 1995PubMedGoogle Scholar
  31. 31.
    McDonald TT, Spencer J: Evidence that activated mucosal T cells play a role in the pathogenesis of enteropathy in human small intestine. J Exp Med 167: 1341–1349, 1988Google Scholar
  32. 32.
    Pender SL, Tickle SP, Docherty AJ, Howie D, Wathen NC, McDonald ~TT: A major role of matrix metalloproteinases in T cell injury in the gut. J Immunol 158:1582–1590, 1997PubMedGoogle Scholar
  33. 33.
    Lundin KE, Scott H, Hansen T, Paulsen G, Halstensen TS, Fausa O, Thorsby E, Sollid LM: Gliadin-specific HLA-DQ (alpha 1*0501, beta 1*0201) restricted T cells isolated from the small intestinal mucosa of celiac disease patients. J Exp Med 178:187–196, 1993PubMedGoogle Scholar
  34. 34.
    Nilsen EM, Lundin KEA, Krajci P, Scott H, Sollid LM, Brandtzaeg P: Gluten-specific HLA-DQ restricted T cells from the coeliac mucosa produce cytokines with a Th1 or Th0 profile dominated by interferon-γ . Gut 37:766–776, 1995PubMedGoogle Scholar
  35. 35.
    Demm RL, Shanahan F, Targan SR: Triggered human mucosal T cells release tumour necrosis factor-alpha and interferon–gamma which kill human colonic epithelial cells. Clin Exp Immunol 5:391–397, 1993Google Scholar
  36. 36.
    Di Sabatino A, Ciccocioppo R, D’Aló S, et al.}: Intraepithelial and lamina propria lymphocytes show distinct patterns of apoptosis whereas both populations are active in Fas based cytotoxicity in coeliac disease. Gut 49:380–386, 2001PubMedGoogle Scholar
  37. 37.
    Maiuri L, Ciacci C, Raia V, Vacca L, Ricciardelli I, Raimondi F, Auricchio ~S, Quaratino S, Londei M: FAS engagement drives apoptosis of enterocytes of coeliac patients. Gut 48:418–424, 2001PubMedGoogle Scholar
  38. 38.
    McDonald TT, Bajaj-Elliot M, Pender SLF: T cells orchestrate intestinal mucosal shape and integrity. Immunol Today 20:505–510, 1999Google Scholar
  39. 39.
    Lundqvist C, Melgar S, Yeung MM-W, Hammarström S, Hammarström M-L: Intraepithelial lymphocytes in human gut have lytic potential and a cytokine profile that suggest T helper 1 and cytotoxic functions. J Immunol 157:1926–1934, 1996PubMedGoogle Scholar
  40. 40.
    Carol M, Lambrechts A, Van Gossum A, Libin M, Goldman M, Mascart-Lemone F: Spontaneous secretion of interferon-γ and interleukin-4 by human intraepithelial and lamina propria gut lymphocytes. Gut 42:643–649, 1998CrossRefPubMedGoogle Scholar
  41. 41.
    Van Damme N, De Vos M, Baeten D, Demetter P, Mielants H, Verbruggen G, Cuvelier C, Veys EM, De Keyser F: Flow cytometric analysis of gut mucosal lymphocytes supports an impaired Th1 cytokine profile in spondyloarthropathy. Ann Rheum Dis 60:495–499, 2001PubMedGoogle Scholar
  42. 42.
    Olaussen RW, Johansen FE, Lundin KEA, Jahnsen J, Brandtzaeg P, Farstad IN: Interferon-γ -secreting T cells localize to the epithelium in coeliac disease. Scand J Immunol 56:652–664, 2002PubMedGoogle Scholar
  43. 43.
    Forsberg G, Hernell O, Melgar S, Israelsson A, Hammarstrong S, Hammarstrong ML: Paradoxical coexpression of proinflammatory and down-regulatory cytokines in intestinal T cells in childhood celiac disease. Gastroenterology 123:667–678, 2002PubMedGoogle Scholar
  44. 44.
    León F, Roldán E, Sanchez L, Camarero C, Bootello A, Roy G: Human small-intestinal epithelium contains functional natural killer lymphocytes. Gastroenterology 125:345–356, 2003PubMedGoogle Scholar
  45. 45.
    Fuss IJ, Neurath M, Boirivant M, Klein SJ, de la Motte C, Strong SA, Fiocchi C, Strober W: Disparate CD4+ lamina propria (LP) lymphokine secretion profiles in inflamatory bowel disease: Crohn’s disease LP cells manifest increased secretion of INF-γ, whereas ulcerative colitis LP cells manifest increased secretion of IL-5. J Immunol 157:1261, 1996PubMedGoogle Scholar
  46. 46.
    Pzemioslo RT, Kontakou M, Nolbili V, Ciclitira PJ: Raised pro-inflammatory cytokines IL-6 and TNFα in coeliac disease mucosa detected by immunohistochemistry. Gut 35:1398–1403, 1994Google Scholar
  47. 47.
    MacDonald T, Hutchings P Choy M, Murch S Cooke A: Tumor necrosis factor-alfa and interferon-gamma production measured at the single cell level in normal and inflamed human intestine. Clin Exp Immunol l81:301–305, 1990Google Scholar
  48. 48.
    Beckett CG, Del’Olio D, Kontakou M, Przemioslo RT, Rosen-BronsonPubMedGoogle Scholar
  49. 49.
    Mention JJ, Ben Ahmed M, Bègue B, Barbe U, Verkarre V, Asnafi ~V, Colombel JF, Cugnenc PH, Ruemmele FM, McIntyre E, Brousse N, Cellier C, Cerf-Bensussan N: Interleukin 15: A key to disrupted intraepithelial lymphocyte homeostasis and lymphomagenesis in celiac disease. Gastroenterology 125:730–745, 2003PubMedGoogle Scholar
  50. 50.
    Van Damme N, de Keyser F, Demetter P, Baeten D, Mielants H, Verbruggen G, Cuvelier C, Veys EM, De Vos M: The proportion of Th1 cells, which prevail in gut mucosa, is decreased in inflammatory bowel syndrome. Clin Exp Immunol 125:383–390, 2001PubMedGoogle Scholar
  51. 51.
    Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W: Interleukin-10 deficient mice develop chronic enterocolites. Cell 75:263–274, 1993PubMedGoogle Scholar
  52. 52.
    Santin AD, Hermonat PL, Ravaggi A, Bellone S, Pecorelli S, Roman ~JJ, Parham GP, Cannon MJ: Interleukin-10 increases Th1 cytokine production and cytotoxic potential in human papilloma-virus-specific CD8+ cytotoxic T lymphocytes. J Virol 74:4729–4737, 2000PubMedGoogle Scholar
  53. 53.
    Lenardo M, Ka-Ming Chan F, Hornung F, McFarland H, Siegel R, Wang J, Zheng L: Mature T lymphocyte apoptosis-immune regulation in a dinamic and unpredictable antigenic environment. Annu Rev Immunol 17:221–253, 1999PubMedGoogle Scholar
  54. 54.
    Papadakis KA, Prehn J, Moreno ST, Cheng L, Kouroumalis EA, Deem R, Breaverman T, Ponath PD, Andrew DP, Green PH, Hodge MR, Binder SW, Targan SR: CCR9-positive lymphocytes and thymus-expressed chemokine distinguish small bowel from colonic Crohn’s disease. Gastroenterology 121:246–254, 2001PubMedGoogle Scholar
  55. 55.
    Gallimore A, Glithero A, Godkin A, Tissot AC, Pluckthun A, Elliott T, Hengartner H, Zinkernagel R: Induction and exhaustion of lymphocytic choriomeningitis virus-specific cytotoxic T lymphocytes using soluble tetrametic major histocompatibility complex class I peptide complexes. J Exp Med 187:1383–1393, 1998PubMedGoogle Scholar
  56. 56.
    Duke RC, Cohen JJ: IL-2 addiction: withdrawal of growth factors activates a suicide program in dependent T cells. Lymphokine Res 5:289–299, 1986PubMedGoogle Scholar
  57. 57.
    Lai YG, Gelfanov V, Gelfanova V, Kulik L, Chu CL, Jeng SW, Liao NS: IL-15 promotes survival but not effector function differentiation of CD8+ TcRα β + intestinal intraepithelial lymphocytes. J Immunol 163:5843–5850, 1999PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Francisco LeÓn
    • 1
    • 2
  • Laura SÁnchez
    • 1
  • Cristina Camarero
    • 2
  • Garbiñe Roy
    • 1
    • 3
  1. 1.Departments of ImmunologyHospital Ramón y CajalMadridSpain
  2. 2.Departments of PaediatricsHospital Ramón y CajalMadridSpain
  3. 3.Servicio de InmunologíaHospital Ramón y CajalMadridSpain

Personalised recommendations