Digestive Diseases and Sciences

, Volume 49, Issue 11–12, pp 1731–1737 | Cite as

Effect of Glucagon-like Peptide-2 (GLP-2) on Diurnal SGLT1 Expression

  • Anthony P. Ramsanahie
  • Urs V. Berger
  • Michael J. Zinner
  • Edward E. Whang
  • David B. RhoadsEmail author
  • Stanley W. Ashley


Glucagon-like peptide 2 (GLP-2) is a 33-amino acid gut peptide that leads to villus hyperplasia and altered gene expression.We examined the effect of chronically administered GLP-2 on diurnal gene expression rhythms using the Na+/glucose cotransporter 1 (SGLT1) as the index. Animals were treated with [Gly2]GLP-2 (twice daily; 1μg/g body weight) or vehicle (control) for 10 days. Rats were killed at either 3 hr or 9 hr after light onset (ZT3 and ZT9, respectively), an interval during which SGLT1 expression exhibits a robust induction. SGLT1 mRNA expression was assessed by Northern blotting and in situ hybridization. SGLT1 protein was examined by immunofluorescence and Western blotting. Tissues from GLP-2-treated rats had increased villus height, crypt depth, and proliferation index (P < 0.05). GLP-2 administration did not alter the diurnal increase in mRNA levels of SGLT1, GLUT2, or GLUT5. However, in GLP-2-treated rats, the SGLT1 protein amount increased at both ZT3 and ZT9. Moreover, SGLT1 was preferentially localized to the apical membranes in this group. GLP-2 does not adversely affect the diurnal expression rhythm of SGLT1 and appears to increase membrane expression of the protein. These biological actions of GLP-2 may contribute to its therapeutic value in intestinal diseases.

gastrointestinal hormones monosaccharide transport proteins intestinal epithelium diurnal rhythm gene expression regulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tsai CH, Hill M, Asa SL, Brubaker PL, Drucker DJ: Intestinal growth-promoting properties of glucagon-like peptide-2 in mice. Am J Physiol 273:E77–E84, 1997CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Drucker DJ: Glucagon-like peptide 2. J Clin Endocrinol Metab 86:1759–1764, 2001PubMedGoogle Scholar
  3. 3.
    Chance WT, Foley-Nelson T, Thomas I, Balasubramaniam A: Prevention of parenteral nutrition-induced gut hypoplasia by coinfusion of glucagon-like peptide-2. Am J Physiol 273:G559–G563, 1997PubMedGoogle Scholar
  4. 4.
    Drucker DJ, Yusta B, Boushey RP, DeForest L, Brubaker PL: Human [Gly2]GLP-2 reduces the severity of colonic injury in a murine model of experimental colitis. Am J Physiol 276: G79–G91, 1999PubMedGoogle Scholar
  5. 5.
    Scott RB, Kirk D, MacNaughton WK, Meddings JB: GLP-2 augments the adaptive response to massive intestinal resection in rat. Am J Physiol 275:G911–G921, 1998CrossRefPubMedGoogle Scholar
  6. 6.
    Boushey RP, Yusta B, Drucker DJ: Glucagon-like peptide 2 decreases mortality and reduces the severity of indomethacin-induced murine enteritis. Am J Physiol 277:E937–E947, 1999CrossRefPubMedGoogle Scholar
  7. 7.
    Tavakkolizadeh A, Shen R, Abraham P, Kormi N, Seifert P, Edelman ER, Jacobs DO, Zinner MJ, Ashley SW, Whang EE: Glucagon-like peptide 2: A new treatment for chemotherapy-induced enteritis. J Surg Res 91:77–82, 2000CrossRefPubMedGoogle Scholar
  8. 8.
    Cheeseman CI: Upregulation of SGLT-1 transport activity in rat jejunum induced by GLP-2 infusion in vivo. Am J Physiol 273:R1965–R1971, 1997PubMedGoogle Scholar
  9. 9.
    Rhoads DB, Rosenbaum DH, Unsal H, Isselbacher KJ, Levitsky LL: Circadian periodicity of intestinal Na+/glucose cotransporter 1 mRNA levels is transcriptionally regulated. J Biol Chem 273:9510–9516, 1998CrossRefPubMedGoogle Scholar
  10. 10.
    Tavakkolizadeh A, Berger UV, Shen KR, Levitsky LL, Zinner MJ, Hediger MA, Ashley SW, Whang EE, Rhoads DB: Diurnal rhythmicity in intestinal SGLT-1 function, V(max), and mRNA expression topography. Am J Physiol Gastrointest Liver Physiol 280:G209–G215, 2001CrossRefPubMedGoogle Scholar
  11. 11.
    Xiao Q, Boushey RP, Drucker DJ, Brubaker PL: Secretion of the intestinotropic hormone glucagon-like peptide 2 is differentially regulated by nutrients in humans. Gastroenterology 117:99–105, 1999CrossRefPubMedGoogle Scholar
  12. 12.
    Henriksen DB, Alexandersen P, Bjarnason NH, Vilsboll T, Hartmann B, Henriksen EE, Byrjalsen I, Krarup T, Holst JJ, Christiansen C: Role of gastrointestinal hormones in postprandial reduction of bone resorption. J Bone Miner Res 18:2180–2189, 2003CrossRefPubMedGoogle Scholar
  13. 13.
    Ramsanahie A, Duxbury MS, Grikscheit TC, Perez A, Rhoads DB, Gardner-Thorpe J, Ogilvie J, Ashley SW, Vacanti JP, Whang EE: Effect of GLP-2 on mucosal morphology and SGLT1 expression in tissue-engineered neointestine. Am J Physiol Gastrointest Liver Physiol 285:G1345–G1352, 2003CrossRefPubMedGoogle Scholar
  14. 14.
    Rand EB, Depaoli AM, Davidson NO, Bell GI, Burant CF: Sequence, tissue distribution, and functional characterization of the rat fructose transporter GLUT5. Am J Physiol 264:G1169–G1176, 1993PubMedGoogle Scholar
  15. 15.
    Ercolani L, Florence B, Denaro M, Alexander M: Isolation and complete sequence of a functional human glyceraldehyde-3-phosphate dehydrogenase gene. J Biol Chem 263:15335–15341, 1988PubMedGoogle Scholar
  16. 16.
    Hirayama BA, Wright EM: Glycosylation of the rabbit intestinal brush border Na+/glucose cotransporter. Biochim Biophys Acta 1103:37–44, 1992CrossRefPubMedGoogle Scholar
  17. 17.
    Berger UV, Hediger MA: Differential distribution of the glutamate transporters GLT-1 and GLAST in tanycytes of the third ventricle. J Comp Neurol 433:101–114, 2001CrossRefPubMedGoogle Scholar
  18. 18.
    Burant CF, Flink S, DePaoli AM, Chen J, Lee WS, Hediger MA, Buse JB, Chang EB: Small intestine hexose transport in experimental diabetes. Increased transporter mRNA and protein expression in enterocytes. J Clin Invest 93:578–585, 1994CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hwang ES, Hirayama BA, Wright EM: Distribution of the SGLT1 Na+/glucose cotransporter and mRNA along the crypt-villus axis of rabbit small intestine. Biochem Biophys Res Commun 181:1208–1217, 1991CrossRefPubMedGoogle Scholar
  20. 20.
    Uribe JM, Barrett KE: Nonmitogenic actions of growth factors: An integrated view of their role in intestinal physiology and pathophysiology. Gastroenterology 112:255–268, 1997PubMedGoogle Scholar
  21. 21.
    Ferraris RP: Dietary and developmental regulation of intestinal sugar transport. Biochem J 360:265–276, 2001CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Wright EM: I. Glucose galactose malabsorption. Am J Physiol 275:G879–G882, 1998PubMedGoogle Scholar
  23. 23.
    Desjeux JF Wright EM: [30 years’ work on congenital glucose and galactose malabsorption: From phenotype to genotype]. Ann Gastroenterol Hepatol (Paris) 29:263–266 (discussion 266–268), 1993Google Scholar
  24. 24.
    Loo DD, Wright EM, Zeuthen T: Water pumps. J Physiol 542:53–60, 2002CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Tavakkolizadeh A, Shen R, Jasleen J, Soybel DI, Jacobs DO, Zinner MJ, Ashley SW, Whang EE: Effect of growth hormone on intestinal Na+/glucose cotransporter activity. JPEN J Parenter Enteral Nutr 25:18–22, 2001CrossRefPubMedGoogle Scholar
  26. 26.
    Lescale-Matys L, Dyer J, Scott D, Freeman TC, Wright EM, Shirazi-Beechey SP: Regulation of the ovine intestinal Na+/glucose co-transporter (SGLT1) is dissociated from mRNA abundance. Biochem J 291 (Pt 2):435–440, 1993CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Shirazi-Beechey SP, Gribble SM, Wood IS, Tarpey PS, Beechey RB, Dyer J, Scott D, Barker PJ: Dietary regulation of the intestinal sodium-dependent glucose cotransporter (SGLT1). Biochem Soc Trans 22:655–658, 1994CrossRefPubMedGoogle Scholar
  28. 28.
    Yoshida A, Takata K, Kasahara T, Aoyagi T, Saito S, Hirano H: Immunohistochemical localization of Na(+)-dependent glucose transporter in the rat digestive tract. Histochem J 27:420–426, 1995CrossRefPubMedGoogle Scholar
  29. 29.
    Brubaker PL, Izzo A, Hill M, Drucker DJ: Intestinal function in mice with small bowel growth induced by glucagon-like peptide-2. Am J Physiol 272:E1050–E1058, 1997PubMedGoogle Scholar
  30. 30.
    Martin GR, Wallace LE, Sigalet DL: Glucagon-like peptide-2 induces intestinal adaptation in parenterally fed rats with short bowel syndrome. Am J Physiol Gastrointest Liver Physiol 286:G964–G972, 2004CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Wright EM, Turk E, Zabel B, Mundlos S, Dyer J: Molecular genetics of intestinal glucose transport. J Clin Invest 88:1435–1440, 1991CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • Anthony P. Ramsanahie
    • 1
  • Urs V. Berger
    • 2
  • Michael J. Zinner
    • 1
  • Edward E. Whang
    • 1
  • David B. Rhoads
    • 3
    Email author
  • Stanley W. Ashley
    • 1
  1. 1.Department of Surgery, Brigham and Women’s HospitalHarvard Medical SchoolBoston
  2. 2.UB–In SituNatick
  3. 3.Pediatric Endocrine Unit, MassGeneral Hospital for ChildrenHarvard Medical SchoolBostonUSA

Personalised recommendations