Advertisement

Scaling sparse matrix-matrix multiplication in the accumulo database

  • Gunduz Vehbi Demirci
  • Cevdet AykanatEmail author
Article
  • 45 Downloads

Abstract

We propose and implement a sparse matrix-matrix multiplication (SpGEMM) algorithm running on top of Accumulo’s iterator framework which enables high performance distributed parallelism. The proposed algorithm provides write-locality while ingesting the output matrix back to database via utilizing row-by-row parallel SpGEMM. The proposed solution also alleviates scanning of input matrices multiple times by making use of Accumulo’s batch scanning capability which is used for accessing multiple ranges of key-value pairs in parallel. Even though the use of batch-scanning introduces some latency overheads, these overheads are alleviated by the proposed solution and by using node-level parallelism structures. We also propose a matrix partitioning scheme which reduces the total communication volume and provides a balance of workload among servers. The results of extensive experiments performed on both real-world and synthetic sparse matrices show that the proposed algorithm scales significantly better than the outer-product parallel SpGEMM algorithm available in the Graphulo library. By applying the proposed matrix partitioning, the performance of the proposed algorithm is further improved considerably.

Keywords

Databases NoSQL Accumulo Graphulo Parallel and distributed computing Sparse matrices Sparse matrix–matrix multiplication SpGEMM Matrix partitioning Graph partitioning Data locality 

Notes

Acknowledgements

The numerical calculations reported in this paper were fully performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources).

References

  1. 1.
    Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: a distributed storage system for structured data. ACM Trans. Comput. Syst. (TOCS) 26(2), 4 (2008)CrossRefGoogle Scholar
  2. 2.
    DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: amazon’s highly available key-value store. In: ACM SIGOPS operating systems review, vol. 41, pp. 205–220. ACM (2007)Google Scholar
  3. 3.
    Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system. ACM SIGOPS Oper. Syst. Rev. 44(2), 35–40 (2010)CrossRefGoogle Scholar
  4. 4.
    Fuchs, A.: Accumulo-extensions to googles bigtable design, National Security Agency, Tech. Rep (2012)Google Scholar
  5. 5.
    Apache hbase. https://hbase.apache.org/ (2018). Accessed 15 April 2018
  6. 6.
    Sen, R., Farris, A., Guerra, P.: Benchmarking apache accumulo bigdata distributed table store using its continuous test suite. In: 2013 IEEE International Congress on Big Data (BigData Congress), pp. 334–341. IEEE (2013)Google Scholar
  7. 7.
    Hutchison, D., Kepner, J., Gadepally, V., Howe, B.: From nosql accumulo to newsql graphulo: Design and utility of graph algorithms inside a bigtable database. In: 2016 IEEE on High Performance Extreme Computing Conference (HPEC), pp. 1–9. IEEE (2016)Google Scholar
  8. 8.
    Grolinger, K., Higashino, W.A., Tiwari, A., Capretz, M.A.: Data management in cloud environments: Nosql and newsql data stores. J. Cloud Comput. 2(1), 22 (2013)CrossRefGoogle Scholar
  9. 9.
    Gadepally, V., Bolewski, J., Hook, D., Hutchison, D., Miller, B., Kepner, J.: Graphulo: Linear algebra graph kernels for nosql databases. In: 2015 IEEE International on Parallel and Distributed Processing Symposium Workshop (IPDPSW), pp. 822–830. IEEE (2015)Google Scholar
  10. 10.
    Kepner, J., Bader, D., Buluç, A., Gilbert, J., Mattson, T., Meyerhenke, H.: Graphs, matrices, and the graphblas: seven good reasons. Procedia Comput. Sci. 51, 2453–2462 (2015)CrossRefGoogle Scholar
  11. 11.
    Weale, T., Gadepally, V., Hutchison, D., Kepner, J.: Benchmarking the graphulo processing framework. In: 2016 IEEE on High Performance Extreme Computing Conference (HPEC), pp. 1–5. IEEE (2016)Google Scholar
  12. 12.
    Buluç, A., Gilbert, J.R.: Highly parallel sparse matrix-matrix multiplication, arXiv preprint arXiv:1006.2183 (2010)
  13. 13.
    Kepner, J., Gilbert, J.: Graph algorithms in the language of linear algebra. SIAM, Philadelphia (2011)CrossRefzbMATHGoogle Scholar
  14. 14.
    Hutchison, D., Kepner, J., Gadepally, V., Fuchs, A.: Graphulo implementation of server-side sparse matrix multiply in the accumulo database. In: 2015 IEEE on High Performance Extreme Computing Conference (HPEC), pp. 1–7. IEEE (2015)Google Scholar
  15. 15.
    Akbudak, K., Selvitopi, O., Aykanat, C.: Partitioning models for scaling parallel sparse matrix-matrix multiplication. ACM Trans. Parallel Comput. (TOPC) 4(3), 13 (2018)Google Scholar
  16. 16.
    Bader, D., Madduri, K., Gilbert, J., Shah, V., Kepner, J., Meuse, T., Krishnamurthy, A.: Designing scalable synthetic compact applications for benchmarking high productivity computing systems. Cyberinfrastruct. Technol. Watch 2, 1–10 (2006)Google Scholar
  17. 17.
    Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file system. In: 2010 IEEE 26th symposium on Mass storage systems and technologies (MSST), pp. 1–10. IEEE (2010)Google Scholar
  18. 18.
    Hunt, P., Konar, M., Junqueira, F.P., Reed, B.: Zookeeper: Wait-free coordination for internet-scale systems. In: USENIX annual technical conference, vol. 8, p. 9 (2010)Google Scholar
  19. 19.
    Wang, E., Zhang, Q., Shen, B., Zhang, G., Lu, X., Wu, Q., Wang, Y.: Intel math kernel library. In: High-Performance Computing on the Intel\({\textregistered }\) Xeon Phi, pp. 167–188. Springer, New York (2014)Google Scholar
  20. 20.
    Patwary, M.M.A., Satish, N.R., Sundaram, N., Park, J., Anderson, M.J., Vadlamudi, S.G., Das, D., Pudov, S.G., Pirogov, V.O., Dubey, P.: Parallel efficient sparse matrix-matrix multiplication on multicore platforms. In: International Conference on High Performance Computing, pp. 48–57. Springer, New York (2015)Google Scholar
  21. 21.
    Gremse, F., Hofter, A., Schwen, L.O., Kiessling, F., Naumann, U.: GPU-accelerated sparse matrix-matrix multiplication by iterative row merging. SIAM J. Sci. Comput. 37(1), C54–C71 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Akbudak, K., Aykanat, C.: Exploiting locality in sparse matrix-matrix multiplication on many-core architectures. IEEE Trans. Parallel Distrib. Syst. 28(8), 2258–2271 (2017)CrossRefGoogle Scholar
  23. 23.
    Heroux, M.A., Bartlett, R.A., Howle, V.E., Hoekstra, R.J., Hu, J.J., Kolda, T.G., Lehoucq, R.B., Long, K.R., Pawlowski, R.P., Phipps, E.T.: An overview of the trilinos project. ACM Trans. Math. Softw. (TOMS) 31(3), 397–423 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Buluç, A., Gilbert, J.R.: The combinatorial blas: design, implementation, and applications. Int. J. High Perform. Comput. Appl. 25(4), 496–509 (2011)CrossRefGoogle Scholar
  25. 25.
    Buluç, A., Gilbert, J.R.: Parallel sparse matrix-matrix multiplication and indexing: implementation and experiments. SIAM J. Sci. Comput. 34(4), C170–C191 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Akbudak, K., Aykanat, C.: Simultaneous input and output matrix partitioning for outer-product-parallel sparse matrix-matrix multiplication. SIAM J. Sci. Comput. 36(5), C568–C590 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Catalyurek, U., Aykanat, C.: A hypergraph-partitioning approach for coarse-grain decomposition. In: Proceedings of the 2001 ACM/IEEE Conference on Supercomputing, pp. 28–28. ACM (2001)Google Scholar
  28. 28.
    Karypis, G.: Multilevel algorithms for multi-constraint hypergraph partitioning, tech. rep., MINNESOTA UNIV MINNEAPOLIS DEPT OF COMPUTER SCIENCE (1999)Google Scholar
  29. 29.
    Karypis, G., Kumar, V.: Metis—unstructured graph partitioning and sparse matrix ordering system, version 2.0 (1995)Google Scholar
  30. 30.
    Chevalier, C., Pellegrini, F.: Pt-scotch: a tool for efficient parallel graph ordering. Parallel Comput. 34(6–8), 318–331 (2008)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Bejeck, B.: Getting Started with Google Guava. Packt Publishing Ltd, Birmingham (2013)Google Scholar
  32. 32.
    Karypis, G., Kumar, V.: Multilevelk-way partitioning scheme for irregular graphs. J. Parallel Distrib. Comput. 48(1), 96–129 (1998)CrossRefGoogle Scholar
  33. 33.
    Liu, W., Vinter, B.: An efficient GPU general sparse matrix-matrix multiplication for irregular data. In: 2014 IEEE 28th International on Parallel and Distributed Processing Symposium, pp. 370–381. IEEE (2014)Google Scholar
  34. 34.
    McCourt, M., Smith, B., Zhang, H.: Sparse matrix-matrix products executed through coloring. SIAM J. Matrix Anal. Appl. 36(1), 90–109 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    D’Alberto, P., Nicolau, A.: R-kleene: a high-performance divide-and-conquer algorithm for the all-pair shortest path for densely connected networks. Algorithmica 47(2), 203–213 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Ordonez, C.: Optimization of linear recursive queries in SQL. IEEE Trans. Knowl. Data Eng. 22(2), 264–277 (2010)CrossRefGoogle Scholar
  37. 37.
    Ordonez, C., Zhang, Y., Cabrera, W.: The gamma matrix to summarize dense and sparse data sets for big data analytics. IEEE Trans. Knowl. Data Eng. 28(7), 1905–1918 (2016)CrossRefGoogle Scholar
  38. 38.
    Linden, G., Smith, B., York, J.: Amazon. com recommendations: item-to-item collaborative filtering. IEEE Internet Comput. 7(1), 76–80 (2003)CrossRefGoogle Scholar
  39. 39.
    Davis, T.A., Hu, Y.: The university of florida sparse matrix collection. ACM Trans. Math. Softw. (TOMS) 38(1), 1 (2011)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Bell, N., Dalton, S., Olson, L.N.: Exposing fine-grained parallelism in algebraic multigrid methods. SIAM J. Sci. Comput. 34(4), C123–C152 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Li, H., Li, K., Peng, J., Hu, J., Li, K.: An efficient parallelization approach for large-scale sparse non-negative matrix factorization using kullback-leibler divergence on multi-GPU. In: IEEE International Symposium on Parallel and Distributed Processing with Applications and 2017 IEEE International Conference on Ubiquitous Computing and Communications (ISPA/IUCC), 2017, pp. 511–518. IEEE (2017)Google Scholar
  42. 42.
    Li, H., Li, K., Peng, J., Li, K.: Cusnmf: A sparse non-negative matrix factorization approach for large-scale collaborative filtering recommender systems on multi-GPU. In: 2017 IEEE International Symposium on Parallel and Distributed Processing with Applications and 2017 IEEE International Conference on Ubiquitous Computing and Communications (ISPA/IUCC), pp. 1144–1151. IEEE (2017)Google Scholar
  43. 43.
    Kannan, R., Ballard, G., Park, H.: Mpi-faun: an MPI-based framework for alternating-updating nonnegative matrix factorization. IEEE Trans. Knowl. Data Eng. 30(3), 544–558 (2018)CrossRefGoogle Scholar
  44. 44.
    Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: Advances in neural information processing systems, pp. 556–562 (2001)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Computer EngineeringBilkent UniversityAnkaraTurkey

Personalised recommendations