Advertisement

Concept acquisition and improved in-database similarity analysis for medical data

  • Ingmar Wiese
  • Nicole Sarna
  • Lena Wiese
  • Araek Tashkandi
  • Ulrich Sax
Article
  • 41 Downloads
Part of the following topical collections:
  1. Special Issue on Data Management and Analytics for Healthcare

Abstract

Efficient identification of cohorts of similar patients is a major precondition for personalized medicine. In order to train prediction models on a given medical data set, similarities have to be calculated for every pair of patients—which results in a roughly quadratic data blowup. In this paper we discuss the topic of in-database patient similarity analysis ranging from data extraction to implementing and optimizing the similarity calculations in SQL. In particular, we introduce the notion of chunking that uniformly distributes the workload among the individual similarity calculations. Our benchmark comprises the application of one similarity measures (Cosine similariy) and one distance metric (Euclidean distance) on two real-world data sets; it compares the performance of a column store (MonetDB) and a row store (PostgreSQL) with two external data mining tools (ELKI and Apache Mahout).

Keywords

Patient similarity Row store Column store Cosine similarity Euclidean distance 

Notes

References

  1. 1.
    Anthony Celi, L., Mark, R.G., Stone, D.J., Montgomery, R.A.: “Big data” in the intensive care unit. Closing the data loop. Am. J. Respir. Crit. Care Med. 187(11), 1157–1160 (2013)CrossRefGoogle Scholar
  2. 2.
    Apache Mahout Committers: Apache Mahout. https://mahout.apache.org
  3. 3.
    Brown, S.A.: Patient similarity: emerging concepts in systems and precision medicine. Front. Physiol. 7, 561 (2016)CrossRefGoogle Scholar
  4. 4.
    Cabrera, W., Ordonez, C.: Scalable parallel graph algorithms with matrix-vector multiplication evaluated with queries. Distrib. Parallel Databases 35(3–4), 335–362 (2017)CrossRefGoogle Scholar
  5. 5.
    Chaudhuri, S., Dayal, U.: An overview of data warehousing and olap technology. ACM Sigmod Rec 26(1), 65–74 (1997)CrossRefGoogle Scholar
  6. 6.
    Deza, M.M., Deza, E.: Encyclopedia of Distances. Springer, Berlin (2012)zbMATHGoogle Scholar
  7. 7.
    Dheeru, D., Karra Taniskidou, E.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml
  8. 8.
    Domínguez-Muñoz, J.E., Carballo, F., Garcia, M.J., de Diego, J.M., Campos, R., Yangúela, J., de la Morena, J.: Evaluation of the clinical usefulness of apache II and saps systems in the initial prognostic classification of acute pancreatitis: a multicenter study. Pancreas 8(6), 682–686 (1993)CrossRefGoogle Scholar
  9. 9.
  10. 10.
    ELKI Development Team: ELKI: Environment for Developing KDD-Applications Supported by Index-Structures. https://elki-project.github.io/
  11. 11.
    Ferreira, F.L., Bota, D.P., Bross, A., Mélot, C., Vincent, J.L.: Serial evaluation of the SOFA score to predict outcome in critically ill patients. JAMA 286(14), 1754–1758 (2001)CrossRefGoogle Scholar
  12. 12.
    Garcelon, N., Neuraz, A., Benoit, V., Salomon, R., Kracker, S., Suarez, F., Bahi-Buisson, N., Hadj-Rabia, S., Fischer, A., Munnich, A.: Finding patients using similarity measures in a rare diseases-oriented clinical data warehouse: Dr. Warehouse and the needle in the needle stack. J. Biomed. Inform. 73, 51–61 (2017)CrossRefGoogle Scholar
  13. 13.
    Gottlieb, A., Stein, G.Y., Ruppin, E., Altman, R.B., Sharan, R.: A method for inferring medical diagnoses from patient similarities. BMC Med. 11(1), 194 (2013)CrossRefGoogle Scholar
  14. 14.
    Hill, M.D., Marty, M.R.: Amdahl’s law in the multicore era. IEEE Comput. 41(7), 33–38 (2008)CrossRefGoogle Scholar
  15. 15.
    Hoogendoorn, M., El Hassouni, A., Mok, K., Ghassemi, M., Szolovits, P.: Prediction using patient comparison vs. modeling: a case study for mortality prediction. In: 2016 IEEE 38th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC), pp. 2464–2467 (2016)Google Scholar
  16. 16.
    Johnson, A.E., Pollard, T.J., Shen, L., Lehman, L.W.H., Feng, M., Ghassemi, M., Moody, B., Szolovits, P., Celi, L.A., Mark, R.G.: MIMIC-III, a freely accessible critical care database. Sci. Data 3, 160035 (2016)CrossRefGoogle Scholar
  17. 17.
    Le Gall, J.R., Lemeshow, S., Saulnier, F.: A new simplified acute physiology score (SAPS II) based on a european/north american multicenter study. JAMA 270(24), 2957–2963 (1993)CrossRefGoogle Scholar
  18. 18.
    Lee, J., Maslove, D.M., Dubin, J.A.: Personalized mortality prediction driven by electronic medical data and a patient similarity metric. PLoS ONE 10(5), e0127428 (2015)CrossRefGoogle Scholar
  19. 19.
    Li, L., Cheng, W.Y., Glicksberg, B.S., Gottesman, O., Tamler, R., Chen, R., Bottinger, E.P., Dudley, J.T.: Identification of type 2 diabetes subgroups through topological analysis of patient similarity. Sci. Transl. Med. 7(311), 311ra174–311ra174 (2015)CrossRefGoogle Scholar
  20. 20.
    Morid, M.A., Sheng, O.R.L., Abdelrahman, S.: PPMF: a patient-based predictive modeling framework for early ICU mortality prediction (2017). arXiv preprint. arXiv:1704.07499
  21. 21.
    Ordonez, C.: Statistical model computation with UDFS. IEEE Trans. Knowl. Data Eng. 22(12), 1752–1765 (2010)CrossRefGoogle Scholar
  22. 22.
    Ordonez, C., Cabrera, W., Gurram, A.: Comparing columnar, row and array DBMSS to process recursive queries on graphs. Inf. Syst. 63, 66–79 (2017)CrossRefGoogle Scholar
  23. 23.
    Park, Y.J., Kim, B.C., Chun, S.H.: New knowledge extraction technique using probability for case-based reasoning: application to medical diagnosis. Expert Syst. 23(1), 2–20 (2006)CrossRefGoogle Scholar
  24. 24.
    Passing, L., Then, M., Hubig, N., Lang, H., Michael, S., Günnemann, S., Kemper, A., Neumann, T.: SQL- and operator-centric data analytics in relational main-memory databases. In: EDBT, pp. 84–95 (2017)Google Scholar
  25. 25.
    Qin, C., Rusu, F.: Dot-product join: Scalable in-database linear algebra for big model analytics. In: Proceedings of the 29th International Conference on Scientific and Statistical Database Management, p. 8. ACM, New York (2017)Google Scholar
  26. 26.
    Raasveldt, M., Holanda, P., Mühleisen, H., Manegold, S.: Deep integration of machine learning into column stores. In: EDBT, pp. 473–476. OpenProceedings.org (2018)Google Scholar
  27. 27.
    Saeed, M., Villarroel, M., Reisner, A.T., Clifford, G., Lehman, L.W., Moody, G., Heldt, T., Kyaw, T.H., Moody, B., Mark, R.G.: Multiparameter intelligent monitoring in intensive care II (MIMIC-II): a public-access intensive care unit database. Crit. Care Med. 39(5), 952 (2011)CrossRefGoogle Scholar
  28. 28.
    Schubert, E., Koos, A., Emrich, T., Züfle, A., Schmid, K.A., Zimek, A.: A framework for clustering uncertain data. Proc. VLDB Endow. 8(12), 1976–1979 (2015)CrossRefGoogle Scholar
  29. 29.
    Sharafoddini, A., Dubin, J.A., Lee, J.: Patient similarity in prediction models based on health data: a scoping review. JMIR Med. Inform. 5(1), e7 (2017)CrossRefGoogle Scholar
  30. 30.
    Strack, B., DeShazo, J.P., Gennings, C., Olmo, J.L., Ventura, S., Cios, K.J., Clore, J.N.: Impact of HbA1c measurement on hospital readmission rates: analysis of 70,000 clinical database patient records. BioMed Res. Int. 2014, 781670 (2014)CrossRefGoogle Scholar
  31. 31.
    Sun, J., Sow, D., Hu, J., Ebadollahi, S.: A system for mining temporal physiological data streams for advanced prognostic decision support. In: 2010 IEEE 10th International Conference on Data Mining (ICDM), pp. 1061–1066 (2010)Google Scholar
  32. 32.
    Vincent, J.L., Moreno, R., Takala, J., Willatts, S., De Mendonça, A., Bruining, H., Reinhart, C., Suter, P., Thijs, L.: The SOFA (sepsis-related organ failure assessment) score to describe organ dysfunction/failure. Intensive Care Med. 22(7), 707–710 (1996)CrossRefGoogle Scholar
  33. 33.
    Wang, F., Hu, J., Sun, J.: Medical prognosis based on patient similarity and expert feedback. In: 2012 21st International Conference on Pattern Recognition (ICPR), pp. 1799–1802 (2012)Google Scholar
  34. 34.
    Wang, S., Li, X., Yao, L., Sheng, Q.Z., Long, G.: Learning multiple diagnosis codes for ICU patients with local disease correlation mining. ACM Trans. Knowl. Discov. Data (TKDD) 11(3), 31 (2017)Google Scholar
  35. 35.
    Wiese, L.: Advanced Data Management for SQL, NoSQL, Cloud and Distributed Databases. DeGruyter/Oldenbourg, Munich (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Computer ScienceUniversity of GoettingenGöttingenGermany
  2. 2.Faculty of Computing and Information TechnologyKing Abdulaziz UniversityJeddahKingdom of Saudi Arabia
  3. 3.Department of Medical Informatics, University Medical Center GoettingenUniversity of GoettingenGöttingenGermany

Personalised recommendations