Advertisement

Distributed and Parallel Databases

, Volume 37, Issue 4, pp 543–586 | Cite as

A FCA framework for inference control in data integration systems

  • Mokhtar SellamiEmail author
  • Mohand-Said Hacid
  • Mohamed Mohsen Gammoudi
Article
  • 55 Downloads

Abstract

Specifying a global access control policy in a data integration system using traditional methods does not necessarily offer a sound and efficient solution to deal with the inference problem. This is because data dependencies (between distributed data sets) are not taken into account when local policies are defined. In this paper, we propose a methodology, together with a set of algorithms, that can help to efficiently detect inferences by considering semantic constraints. The proposed approach is based on formal concept analysis (FCA) as a representation framework. Given a set of local policies, an initial global policy and data dependencies, we propose a methodology that allows the security administrator to derive a set of queries that, combined, could disclose sensitive information. We also say that the set of queries constitutes an inference channel. We use FCA theories to identify the illegal queries known as disclosure transactions. Then, we propose a run-time solution for neutralizing all suspicious queries while ensuring a trade-off between data protection and data availability. By combining Prime Number with Lattice theory, we keep traces of the previously executed queries so that inferences are blocked at run-time. We also discuss a set of experiments that we conducted.

Keywords

Access control Data integration security Inference problem Databases security and privacy Distributed databases 

Notes

Acknowledgements

This work is supported by Thomson Reuters in the framework of the Partner University Fund project: “Cybersecurity Collaboratory: Cyberspace Threat Identification, Analysis and Proactive Response”. The Partner University Fund is a program of the French Embassy in the United States and the FACE Foundation and is supported by American donors and the French government.

References

  1. 1.
    Chen, M., Mao, S., Liu, Y.: Big data: a survey. Mob. Netw. Appl. 19(2), 171–209 (2014)Google Scholar
  2. 2.
    Brunswicker, S., Bertino, E., Matei, S.: Big data for open digital innovation—a research roadmap. Big Data Res. 2(2), 53–58 (2015)Google Scholar
  3. 3.
    Victor, N., Lopez, D., Abawajy, J.H.: Privacy models for big data: a survey. Int. J. Big Data Intell. 3(1), 61–75 (2016)Google Scholar
  4. 4.
    Li, X., Bertino, E., Yi, M.: Security of new generation computing systems. Concurr. Comput. 26(8), 1475–1476 (2014)Google Scholar
  5. 5.
    Haddad, M, Stevovic, J., Chiasera, A., Velegrakis, Y., Hacid, M.-S.: Access control for data integration in presence of data dependencies. In: 19th International Conference on Database Systems for Advanced Applications, DASFAA, pp. 203–217. Bali, Indonesia, 21–24 April 2014Google Scholar
  6. 6.
    den Hartog, J., Zannone, N.: A policy framework for data fusion and derived data control. In: Proceedings of the 2016 ACM International Workshop on Attribute Based Access Control, ABAC ’16, pp. 47–57. ACM, New York, NY, USA (2016)Google Scholar
  7. 7.
    Farkas, C., Jajodia, S.: The inference problem: a survey. SIGKDD Explor. Newsl. 4(2), 6–11 (2002)Google Scholar
  8. 8.
    Rosenthal, A, Sciore, E.: View security as the basis for data warehouse security. In: CAiSE Workshop on Design and Management of Data Warehouses, pp. 5–6 (2000)Google Scholar
  9. 9.
    Rosenthal, A., Sciore, E.: Administering permissions for distributed data: factoring and automated inference. In: Proceedings of IFIP WG11.3 Conference (2001)Google Scholar
  10. 10.
    De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.: Assessing query privileges via safe and efficient permission composition. In: ACM Conference on Computer and Communications Security, pp. 311–322 (2008)Google Scholar
  11. 11.
    Cuzzocrea, A., Hacid, M.S., Grillo, N.: Effectively and efficiently selecting access control rules on materialized views over relational databases. In: International Database Engineering and Applications Symposium (IDEAS), pp. 225–235 (2010)Google Scholar
  12. 12.
    Pottinger, R., Halevy, A.: Minicon: a scalable algorithm for answering queries using views. VLDB J. 10(2–3), 182–198 (2001)zbMATHGoogle Scholar
  13. 13.
    Nait-Bahloul, S., Coquery, E., Hacid, M.-S.: Authorization policies for materialized views. In: Information Security and Privacy Research, pp. 525–530. Springer, New York (2012)Google Scholar
  14. 14.
    Haddad, M., Hacid, M.-S., Laurini, R.: Data integration in presence of authorization policies. In: 11th IEEE International Conference on Trust, Security and Privacy in Computing and Communications, TrustCom 2012, pp. 92–99. Liverpool, United Kingdom, 25–27 June 2012Google Scholar
  15. 15.
    Rizvi, S., Mendelzon, A.O., Sudarshan, S., Roy, P.: Extending query rewriting techniques for fine-grained access control. In: Weikum, G., König, A.C., Deßloch, S. (eds) Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 551–562. ACM, Paris, France, 13–18 Jun, 2004Google Scholar
  16. 16.
    Sellami, M., Gammoudi, M.M., Hacid, M.S.: Secure data integration: a formal concept analysis based approach. In: Database and Expert Systems Applications, pp. 326–333. Springer, New York (2014)Google Scholar
  17. 17.
    Denning, D.E., Schlorer, J.: Inference controls for statistical databases. Computer 16(7), 69–82 (1983)Google Scholar
  18. 18.
    Fellegi, I.P.: On the question of statistical confidentiality. J. Am. Stat. Assoc. 67(337), 7–18 (1972)zbMATHGoogle Scholar
  19. 19.
    Friedman, T.D., Hoffman, L.J.: In: IEEE Symposium on Security and PrivacyGoogle Scholar
  20. 20.
    Hoffman, L.J., Miller, W.F.: Getting a personal dossier from a statistical data bank. In: Hoffman, L.J. (ed.) Security and Privacy in Computer Systems, pp. 289–293. Melville Publishing Company, Los Angeles (1973)Google Scholar
  21. 21.
    Reiss, S.P.: Practical data-swapping: the first steps. ACM Trans. Database Syst. 9(1), 20–37 (1984)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Schlörer, J.: Security of statistical databases: multidimensional transformation. ACM Trans. Database Syst. 6(1), 95–112 (1981)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Liew, C.K., Choi, U.J., Liew, C.J.: A data distortion by probability distribution. ACM Trans. Database Syst. 10(3), 395–411 (1985)zbMATHGoogle Scholar
  24. 24.
    Lefons, E., Silvestri, A., Tangorra, F.: An analytic approach to statistical databases. In: Proceedings of the 9th International Conference on Very Large Data Bases, VLDB ’83, pp. 260–274. Morgan Kaufmann Publishers Inc, San Francisco, CA, USA(1983)Google Scholar
  25. 25.
    Warner, S.L.: Randomized response: a survey technique for eliminating evasive answer bias. J. Am. Stat. Assoc. 60(309), 63 (1965)zbMATHGoogle Scholar
  26. 26.
    Traub, J.F., Yemini, Y., Wozniakowski, H.: The statistical security of a statistical database. ACM Trans. Database Syst. 9(4), 672–679 (1984)Google Scholar
  27. 27.
    Denning, D.E.: Secure statistical databases with random sample queries. ACM Trans. Database Syst. 5(3), 291–315 (1980)zbMATHGoogle Scholar
  28. 28.
    Beck, L.L.: A security machanism for statistical database. ACM Trans. Database Syst. 5(3), 316–3338 (1980)Google Scholar
  29. 29.
    Fellegi, P.I., Phillips, J.J.: Statistical confidentiality: some theory and application to data dissemination. In: Annals of Economic and Social Measurement, vol. 3, no. 2, pp. 101–112. National Bureau of Economic Research, Inc. (1974)Google Scholar
  30. 30.
    Ozsoyoglu, G., Su, T.-A.: Rounding and inference control in conceptual models for statistical databases. In: 2013 IEEE Symposium on Security and Privacy, pp. 160. IEEE (1985)Google Scholar
  31. 31.
    Goguen, J.A., Meseguer, J.: Unwinding and Inference Control. In: Proceedings of the 1984 IEEE Symposium on Security and Privacy, pp. 75–86. IEEE Computer Society (1984)Google Scholar
  32. 32.
    Su, T.-A., Özsoyoglu, G.: Data dependencies and inference control in multilevel relational database systems. In: Proceedings of the 1987 IEEE Symposium on Security and Privacy, pp. 202–211. Oakland, California, USA, 27–29 April, 1987Google Scholar
  33. 33.
    Chen, P.P.S.: The entity-relationship model: toward a unified view of data. ACM Trans. Database Syst. 1, 9–36 (1976)Google Scholar
  34. 34.
    Meadows, C., Jajodia, S.: Integrity versus security in multi-level secure databases. In: DBSec, pp. 89–101 (1987)Google Scholar
  35. 35.
    Morgenstern, M.: In: IEEE Symposium on Security and PrivacyGoogle Scholar
  36. 36.
    Delugach, H.S., Hinke, T.H.: Wizard: a database inference analysis and detection system. IEEE Trans. Knowl. Data Eng. 8(1), 56–66 (1996)Google Scholar
  37. 37.
    Tzong-An, S., Ozsoyoglu, G.: Controlling fd and mvd inferences in multilevel relational database systems. IEEE Trans. Knowl. Data Eng. 3(4), 474–485 (1991)Google Scholar
  38. 38.
    Dawson, S., di Vimercati, S.D.C., Samarati, P.: Specification and enforcement of classification and inference constraints. In: Proceedings of the 1999 IEEE Symposium on Security and Privacy, pp. 181–195. IEEE (1999)Google Scholar
  39. 39.
    Brodsky, A., Farkas, C., Jajodia, S.: Secure databases: constraints, inference channels, and monitoring disclosures. IEEE Trans. Knowl. Data Eng. 12(6), 900–919 (2000)Google Scholar
  40. 40.
    Chen, Y., Chu, W.W.: Protection of database security via collaborative inference detection. IEEE Trans. Knowl. Data Eng. 20(8), 1013–1027 (2008)Google Scholar
  41. 41.
    Paci, F., Zannone, N.: Preventing information inference in access control. In: Proceedings of the 20th ACM Symposium on Access Control Models and Technologies, pp. 87–97. ACM (2015)Google Scholar
  42. 42.
    Albertini, D.A., Carminati, B., Ferrari, E.: An extended access control mechanism exploiting data dependencies. Int. J. Inf. Secur. 16(1), 75–89 (2017)Google Scholar
  43. 43.
    Guarnieri, M., Marinovic, S., Basin, D.A.: Securing databases from probabilistic inference. In: 30th IEEE Computer Security Foundations Symposium, CSF 2017, pp. 343–359. Santa Barbara, CA, USA, 21–25 Aug 2017Google Scholar
  44. 44.
    Turan, U., Toroslu, S.H., Kantarclu, M.: Secure logical schema and decomposition algorithm for proactive context dependent attribute based inference control. Data Knowl. Eng. 111(Supplement C), 1–21 (2017)Google Scholar
  45. 45.
    Sharma, S., Rajawat, A.S.: A review of privacy preserving models for multi-party data release framework. In: Proceedings of the ACM Symposium on Women in Research 2016, pp. 165–168. ACM (2016)Google Scholar
  46. 46.
    Shu, X., Yao, D., Bertino, E.: Privacy-preserving detection of sensitive data exposure. IEEE Trans. Inf. Forensics Secur. 10(5), 1092–1103 (2015)Google Scholar
  47. 47.
    Liu, F., Shu, X., Yao, D., Butt, A.R.: Privacy-preserving scanning of big content for sensitive data exposure with mapreduce. In: Proceedings of the 5th ACM Conference on Data and Application Security and Privacy, pp. 195–206. ACM (2015)Google Scholar
  48. 48.
    Sellami, M., Hacid, M.-S., Gammoudi, M.-M.: Inference control in data integration systems. In: OTM Confederated International Conferences On the Move to Meaningful Internet Systems, pp. 285–302. Springer, New York (2015)Google Scholar
  49. 49.
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations, 1st edn. Springer, New York (1997)zbMATHGoogle Scholar
  50. 50.
    Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concept. In: Mrivali, (ed.) Ordered Sets. Reidel, Dordrecht, Boston (1982)Google Scholar
  51. 51.
    Poelmans, J., Kuznetsov, S.O., Ignatov, D.I., Dedene, G.: Formal concept analysis in knowledge processing: a survey on models and techniques. Expert Ayst. Appl. 40(16), 6601–6623 (2013)Google Scholar
  52. 52.
    Wille, R.: Concept lattices and conceptual knowledge systems. Comput. Math. Appl. 23(6), 493–515 (1992)zbMATHGoogle Scholar
  53. 53.
    Groh, B.: Automated knowledge and information fusion from multiple text-based sources using formal concept analysis (1999)Google Scholar
  54. 54.
    Tamer Özsu, M., Valduriez, P.: Principles of Distributed Database Systems, 3rd edn. Springer, New York (2011)Google Scholar
  55. 55.
    Levene, M., Loizou, G.: A Guided Tour of Relational Databases and Beyond. Springer, New York (1999)zbMATHGoogle Scholar
  56. 56.
    Godin, R., Missaoui, R., Alaoui, H.: Incremental concept formation algorithms based on galois (concept) lattices. Comput. Intell. 11(2), 246–267 (1995)Google Scholar
  57. 57.
    Sellami, M., Hacid, M.-S., Gammoudi, M.M.: Inference control in data integration systems. In: On the Move to Meaningful Internet Systems: OTM 2015 Conferences—Confederated International Conferences: CoopIS, ODBASE, and C&TC 2015, pp. 285–302. Rhodes, Greece, 26-30 Oct 2015Google Scholar
  58. 58.
    Chang, Y.-I., Yang, B.-Y., Yeh, W.-H.: A generalized prime-number-based matrix strategy for efficient iconic indexing of symbolic pictures. Pattern Recognit. Lett. 22(6), 657–666 (2001)zbMATHGoogle Scholar
  59. 59.
    Gouda, K., Hassaan, M., Zaki, M.J.: Prism: A primal-encoding approach for frequent sequence mining. In: Seventh IEEE International Conference on Data Mining. ICDM 2007, pp. 487–492. IEEE (2007)Google Scholar
  60. 60.
    Selmi, A., Gammoudi, M.M., Harrathi, F.: Chapter five a method for improving algorithms of formal concepts extraction using prime numbers. Business Intelligence and Mobile Technology Research: An Information Systems Engineering Perspective, p. 59 (2014)Google Scholar
  61. 61.
    Rouane-Hacene, M., Huchard, M., Napoli, A., Valtchev, P.: Relational concept analysis: mining concept lattices from multi-relational data. Ann. Math. Artif. Intell. 67(1), 81–108 (2013)MathSciNetzbMATHGoogle Scholar
  62. 62.
    Ives, Z.G.: Query Processing in Data Integration Systems, pp. 1–4. Springer, New York (2016)Google Scholar
  63. 63.
    Valtchev, P., Grosser, D., Roume, C., Hacene, M.R.: Galicia: an open platform for lattices. In: de Moor, A., Ganter, B. (eds) Using Conceptual Structures: Contributions to 11th Intl. Conference on Conceptual Structures, pp. 241–254 (2003)Google Scholar
  64. 64.
    Huhtala, Y., Kärkkäinen, J., Porkka, P., Toivonen, H.: TANE: an efficient algorithm for discovering functional and approximate dependencies. The Comput. J. 42(2), 100–111 (1999)zbMATHGoogle Scholar
  65. 65.
    Rabl, T., Poess, M.: Parallel data generation for performance analysis of large, complex RDBMS. In: Proceedings of the Fourth International Workshop on Testing Database Systems, p. 5. ACM (2011)Google Scholar
  66. 66.
    Poess, M., Rabl, T., Jacobsen, H.-A., Caufield, B.: Tpc-di: the first industry benchmark for data integration. Proc. VLDB Endow. 7(13), 1367–1378 (2014)Google Scholar
  67. 67.
    Arevalo, G., Berry, A., Huchard, M., Perrot, G., Sigayret, A.: Performances of galois sub-hierarchy-building algorithms. In: Kuznetsov, S., Schmidt, S. (eds.) Formal Concept Analysis. Lecture Notes in Computer Science, vol. 4390, pp. 166–180. Springer, Berlin (2007)Google Scholar
  68. 68.
    Dias, S.M., Vieira, N.J.: A methodology for analysis of concept lattice reduction. Inf. Sci. 396, 202–217 (2017)MathSciNetGoogle Scholar
  69. 69.
    Mouliswaran, S.C., Kumar, C.A., Chandrasekar, C., et al.: Modeling chinese wall access control using formal concept analysis. In: 2014 International Conference on Contemporary Computing and Informatics (IC3I), pp. 811–816. IEEE (2014)Google Scholar
  70. 70.
    Baixeries, J., Kaytoue, M., Napoli, A.: Characterizing functional dependencies in formal concept analysis with pattern structures. Ann. Math. Artif. Intell. 72(1–2), 129–149 (2014)MathSciNetzbMATHGoogle Scholar
  71. 71.
    Singh, P.K., Kumar, C.A.: Concept lattice reduction using different subset of attributes as information granules. Granul. Comput. 2(3), 159–173 (2017)Google Scholar
  72. 72.
    Singh, P.K., Kumar, C.A., Li, J.: Knowledge representation using interval-valued fuzzy formal concept lattice. Soft Comput. 20(4), 1485–1502 (2016)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Higher Institute of Technological Studies of Jendouba/Riadi Laboratory-ENSI TunisiaManoubaTunisia
  2. 2.Université de Lyon/LIRIS UCBLLyonFrance
  3. 3.Higher Institute of Multimedia Arts of Manouba/Riadi Laboratory-ENSI TunisiaManoubaTunisia

Personalised recommendations