Distributed and Parallel Databases

, Volume 34, Issue 3, pp 379–423 | Cite as

Scalable graph-based OLAP analytics over process execution data

  • Seyed-Mehdi-Reza BeheshtiEmail author
  • Boualem Benatallah
  • Hamid Reza Motahari-Nezhad


In today’s knowledge-, service-, and cloud-based economy, businesses accumulate massive amounts of data from a variety of sources. In order to understand businesses one may need to perform considerable analytics over large hybrid collections of heterogeneous and partially unstructured data that is captured related to the process execution. This data, usually modeled as graphs, increasingly come to show all the typical properties of big data: wide physical distribution, diversity of formats, non-standard data models, independently-managed and heterogeneous semantics. We use the term big process graph to refer to such large hybrid collections of heterogeneous and partially unstructured process related execution data. Online analytical processing (OLAP) of big process graph is challenging as the extension of existing OLAP techniques to analysis of graphs is not straightforward. Moreover, process data analysis methods should be capable of processing and querying large amount of data effectively and efficiently, and therefore have to be able to scale well with the infrastructure’s scale. While traditional analytics solutions (relational DBs, data warehouses and OLAP), do a great job in collecting data and providing answers on known questions, key business insights remain hidden in the interactions among objects: it will be hard to discover concept hierarchies for entities based on both data objects and their interactions in process graphs. In this paper, we introduce a framework and a set of methods to support scalable graph-based OLAP analytics over process execution data. The goal is to facilitate the analytics over big process graph through summarizing the process graph and providing multiple views at different granularity. To achieve this goal, we present a model for process OLAP (P-OLAP) and define OLAP specific abstractions in process context such as process cubes, dimensions, and cells. We present a MapReduce-based graph processing engine, to support big data analytics over process graphs. We have implemented the P-OLAP framework and integrated it into our existing process data analytics platform, ProcessAtlas, which introduces a scalable architecture for querying, exploration and analysis of large process data. We report on experiments performed on both synthetic and real-world datasets that show the viability and efficiency of the approach.


Process analytics Business analytics Bigdata analytics  Graph OLAP OLAP 


  1. 1.
    Aalst, W.M.P.V.D., Dongen, B.F.V., Günther, C.W., Rozinat, A., Verbeek, E., Weijters, T.: ProM: the process mining toolkit. In: Proceedings of the BPM (2009)Google Scholar
  2. 2.
    Aalst, W.M.P.V.D., Dongen, B.F.V., Herbst, J., Maruster, L., Schimm, G., Weijters, A.J.M.M.: Workflow mining: a survey of issues and approaches. Data Knowl. Eng. 47, 237–267 (2003)CrossRefGoogle Scholar
  3. 3.
    Aalst, W.M.P.V.D.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer, Berlin (2011)CrossRefzbMATHGoogle Scholar
  4. 4.
    Aalst, W.M.P.V.D.: Service mining: using process mining to discover, check, and improve service behavior. IEEE Trans. Serv. Comput. 99(PrePrints), 1 (2012)Google Scholar
  5. 5.
    Abadi, D., Marcus, A., Madden, S., Hollenbach, K.: Scalable semantic web data management using vertical partitioning. In: Proceedings of the 33rd International Conference on Very Large Data Bases, pp. 411–422. VLDB Endowment (2007)Google Scholar
  6. 6.
    Abelló, A., Romero, O.: On-line analytical processing. In: Encyclopedia of Database Systems, pp. 1949–1954. Springer, New York (2009)Google Scholar
  7. 7.
    Aggarwal, C.C., Wang, H.: Managing and Mining Graph Data. Springer, New York (2010)CrossRefzbMATHGoogle Scholar
  8. 8.
    Akal, F., Bhm, K., Schek, H.J.: OLAP query evaluation in a database cluster: a performance study on intra-query parallelism. In: Proceedings of the ADBIS, pp. 218–231 (2002)Google Scholar
  9. 9.
    Alkhateeb, F., Baget, J.F., Euzenat, J.: Extending SPARQL with regular expression patterns (for querying RDF). J. Web Sem. 7(2), 57–73 (2009)CrossRefGoogle Scholar
  10. 10.
    Allahbakhsh, M., Ignjatovic, A., Benatallah, B., Beheshti, S.M.R., Bertino, E., Foo, N.: Collusion detection in online rating systems. In: Proceedings of the Web Technologies and Applications—15th Asia-Pacific Web Conference, APWeb 2013, Sydney, April 4–6, 2013, pp. 196–207 (2013)Google Scholar
  11. 11.
    Allahbakhsh, M., Ignjatovic, A., Benatallah, B., Beheshti, S.M.R., Foo, N., Bertino, E.: Representation and querying of unfair evaluations in social rating systems. Comput. Secur. 41, 68–88 (2014)CrossRefGoogle Scholar
  12. 12.
    Anyanwu, K., Maduko, A., Sheth, A.: SPARQ2L: towards support for subgraph extraction queries in RDF databases. WWW’07, pp. 797–806. ACM, New York (2007)Google Scholar
  13. 13.
    Azvine, B., Nauck, D., Ho, C.: Intelligent business analytics: a tool to build decision-support systems for ebusinesses. BT Technol. J. 21(4), 65–71 (2003)CrossRefGoogle Scholar
  14. 14.
    Báez, M., Mussi, A., Casati, F., Birukou, A., Marchese, M.: Liquid journals: scientific journals in the Web 2.0 era. In: Proceedings of the JCDL, pp. 395–396 (2010)Google Scholar
  15. 15.
    Balmin, A., Papadimitriou, T., Papakonstantinou, Y.: Hypothetical queries in an OLAP environment. In: Proceedings of the VLDB, pp. 220–231 (2000)Google Scholar
  16. 16.
    Barbieri, D.F., Braga, D., Ceri, S., Valle, E.D., Grossniklaus, M.: C-SPARQL: SPARQL for continuous querying. In: Proceedings of the WWW, pp. 1061–1062 (2009)Google Scholar
  17. 17.
    Beeri, C., Eyal, A., Milo, T., Pilberg, A.: Monitoring business processes with queries. In: Proceedings of the VLDB (2007)Google Scholar
  18. 18.
    Begel, A., Phang Khoo, Y., Zimmermann, T.: Codebook: discovering and exploiting relationships in software repositories. In: Proceedings of the ICSE’10, pp. 125–134 (2010)Google Scholar
  19. 19.
    Beheshti, S.M.R., Benatallah, B., Motahari Nezhad, H.R., Allahbakhsh, M.: A framework and a language for on-line analytical processing on graphs. In: Proceedings of the Web Information Systems Engineering—WISE 2012–13th International Conference, Paphos, Cyprus, November 28–30, pp. 213–227 (2012)Google Scholar
  20. 20.
    Beheshti, S.M.R., Benatallah, B., Motahari Nezhad, H.R., Sakr, S.: A query language for analyzing business processes execution. In: Proceedings of the Business Process Management—9th International Conference, BPM 2011, Clermont-Ferrand, France, August 30—September 2, pp. 281–297 (2011)Google Scholar
  21. 21.
    Beheshti, S.M.R., Benatallah, B., Motahari-Nezhad, H.R.: Enabling the analysis of cross-cutting aspects in ad-hoc processes. In: Proceedings of the Advanced Information Systems Engineering—25th International Conference, CAiSE 2013, Valencia, June 17–21, pp. 51–67 (2013)Google Scholar
  22. 22.
    Beheshti, S.M.R.: Organizing, Querying, and Analyzing Ad-hoc Processes Data. PhD Thesis, University of New South Wales Sydney (2012)Google Scholar
  23. 23.
    Beyer, K.S., Ramakrishnan, R.: Bottom-up computation of sparse and iceberg CUBEs. In: Proceedings of the SIGMOD 1999, ACM SIGMOD International Conference on Management of Data, June 1–3, 1999, Philadelphia, pp. 359–370. ACM Press, New York (1999)Google Scholar
  24. 24.
    Bizer, C., Heath, T., Berners-Lee, T.: Linked data-the story so far. Int. J. Semant. Web Inf. Syst. 5(3), 1–22 (2009)CrossRefGoogle Scholar
  25. 25.
    Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings of the ICDE, pp. 421–430 (2001)Google Scholar
  26. 26.
    Brambilla, M., Fraternali, P., Vaca, C.: BPMN and design patterns for engineering social BPM solutions. In: Business Process Management Workshops. Lecture Notes in Business Information Processing, vol. 99, pp. 219–230. Springer, Berlin (2012)Google Scholar
  27. 27.
    Buse, R.P.L., Zimmermann, T.: Information needs for software development analytics. In: Proceedings of the ICSE, pp. 987–996 (2012)Google Scholar
  28. 28.
    Casati, F., Shan, M.C.: Semantic analysis of business process executions. In: Proceedings of the EDBT, pp. 287–296 (2002)Google Scholar
  29. 29.
    Chaudhuri, S., Dayal, U.: An overview of data warehousing and OLAP technology. SIGMOD Rec. 26(1), 65–74 (1997)CrossRefGoogle Scholar
  30. 30.
    Chaudhuri, S., Dayal, U., Narasayya, V.: An overview of business intelligence technology. Commun. ACM 54(8), 88–98 (2011)CrossRefGoogle Scholar
  31. 31.
    Chebotko, A., Lu, S., Fotouhi, F.: Semantics preserving SPARQL-to-SQL translation. Data Knowl. Eng. 68(10), 973–1000 (2009)CrossRefGoogle Scholar
  32. 32.
    Chebotko, A., Lu, S., Fei, X., Fotouhi, F.: RDFProv: a relational RDF store for querying and managing scientific workflow provenance. Data Knowl. Eng. 69(8), 836–865 (2010)CrossRefGoogle Scholar
  33. 33.
    Chen, C., Yan, X., Zhu, F., Han, J., Yu, P.S.: Graph OLAP: Towards online analytical processing on graphs. In: Proceedings of the ICDM, pp. 103–112 (2008)Google Scholar
  34. 34.
    Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)CrossRefGoogle Scholar
  35. 35.
    Doan, A., Ramakrishnan, R., Halevy, A.Y.: Crowdsourcing systems on the World-Wide Web. Commun. ACM 54(4), 86–96 (2011)CrossRefGoogle Scholar
  36. 36.
    Dries, A., Nijssen, S., De Raedt, L.: A query language for analyzing networks. In: Proceedings of the CIKM’09, pp. 485–494. ACM, New York (2009)Google Scholar
  37. 37.
    Egghe, L.: Theory and practise of the g-index. Scientometrics 69(1), 131–152 (2006)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Etcheverry, L., Vaisman, A.A.: Enhancing OLAP analysis with web cubes. In: Proceedings of the ESWC, pp. 469–483 (2012)Google Scholar
  39. 39.
    Fritz, T., Murphy, G.C.: Using information fragments to answer the questions developers ask. In: Proceedings of the ICSE’10, pp. 175–184. ACM, New York (2010)Google Scholar
  40. 40.
    Furtado, C., Lima, A.A.B., Pacitti, E., Valduriez, P., Mattoso, M.: Physical and virtual partitioning in OLAP database clusters. In: Proceedings of the SBAC-PAD, pp. 143–150 (2005)Google Scholar
  41. 41.
    Golfarelli, M., Rizzi, S., Proli, A.: Designing what-if analysis: towards a methodology. In: Proceedings of the DOLAP, pp. 51–58 (2006)Google Scholar
  42. 42.
    Gómez, L.I., Gómez, S.A., Vaisman, A.A.: A generic data model and query language for spatiotemporal OLAP cube analysis. In: Proceedings of the EDBT, pp. 300–311 (2012)Google Scholar
  43. 43.
    Gottanka, R., Meyer, N.: ModelAsYouGo: (re-) design of S-BPM process models during execution time. In: S-BPM ONE Scientific Research. Lecture Notes in Business Information Processing, vol. 104, pp. 91–105. Springer, Berlin (2012)Google Scholar
  44. 44.
    Gubichev, A., Bedathur, S.J., Seufert, S.: Fast and accurate estimation of shortest paths in large graphs. In: Proceedings of the CIKM’10, pp. 499–508 (2010)Google Scholar
  45. 45.
    Han, J., Pei, J., Dong, G., Wang, K.: Efficient computation of iceberg cubes with complex measures. In: Proceedings of the SIGMOD Conference, pp. 1–12 (2001)Google Scholar
  46. 46.
    Han, J., Sun, Y., Yan, X., Yu, P.S.: Mining knowledge from data: an information network analysis approach. In: Proceedings of the ICDE (2012)Google Scholar
  47. 47.
    Han, J., Yan, X., Yu, P.S.: Scalable OLAP and mining of information networks. In: Proceedings of the EDBT (2009)Google Scholar
  48. 48.
    Hassanzadeh, O., Duan, S., Fokoue, A., Kementsietsidis, A., Srinivas, K., Ward, M.J.: Helix: online enterprise data analytics. In: Proceedings of the WWW (Companion Volume), pp. 225–228 (2011)Google Scholar
  49. 49.
    Hassanzadeh, O., Kementsietsidis, A., Lim, L., Miller, R.J., Wang, M.: A framework for semantic link discovery over relational data. In: Proceedings of the CIKM, pp. 1027–1036 (2009)Google Scholar
  50. 50.
    Hirsch, J.E.: An index to quantify an individual’s scientific research output that takes into account the effect of multiple coauthorship. Scientometrics 85(3), 741–754 (2010)CrossRefGoogle Scholar
  51. 51.
    Husain, M.F., Doshi, P., Khan, L., Thuraisingham, B.M.: Storage and retrieval of large RDF graph using Hadoop and MapReduce. In: Proceedings of the CloudCom, pp. 680–686 (2009)Google Scholar
  52. 52.
    Husain, M.F., Khan, L., Kantarcioglu, M., Thuraisingham, B.M.: Data intensive query processing for large RDF graphs using cloud computing tools. In: Proceedings of the IEEE CLOUD, pp. 1–10 (2010)Google Scholar
  53. 53.
    Jagadeesh Chandra Bose, R.P., Verbeek, H.M.W., Aalst, W.M.P.V.D.: Discovering hierarchical process models using ProM. In: Proceedings of the CAiSE Forum, pp. 33–40 (2011)Google Scholar
  54. 54.
    Ji, M., Sun, Y., Danilevsky, M., Han, J., Gao, J.: Graph regularized transductive classification on heterogeneous information networks. In: Proceedings of the ECML/PKDD (1), pp. 570–586 (2010)Google Scholar
  55. 55.
    Kämpgen, B., Harth, A.: Transforming statistical linked data for use in OLAP systems. In: Proceedings of the I-SEMANTICS, pp. 33–40 (2011)Google Scholar
  56. 56.
    Kim, H., Ravindra, P., Anyanwu, K.: From SPARQL to MapReduce: the journey using a nested triplegroup algebra. In: Proceedings of the PVLDB 4(12), 1426–1429 (2011)Google Scholar
  57. 57.
    Kmpgen, B., O’Riain, S., Harth, A:. Interacting with statistical linked data via OLAP operations. In: Proceedings of the ILD-ESWC (2012)Google Scholar
  58. 58.
    Kochut, K.J., Janik, M.: SPARQLeR: Extended SPARQL for semantic association discovery. In: Proceedings of the ESWC’07, pp. 145–159. Springer, Berlin (2007)Google Scholar
  59. 59.
    Kohavi, R., Rothleder, N.J., Simoudis, E.: Emerging trends in business analytics. Commun. ACM 45(8), 45–48 (2002)CrossRefGoogle Scholar
  60. 60.
    Koutsoukis, N.S., Mitra, G., Lucas, C.: Adapting on-line analytical processing for decision modelling: the interaction of information and decision technologies. Decis. Support Syst. 26(1), 1–30 (1999)CrossRefGoogle Scholar
  61. 61.
    Kurniawan, T.A., Ghose, A.K., Lê, L.S., Dam, H.K.: On formalizing inter-process relationships. In: Proceedings of the Business Process Management Workshops. Lecture Notes in Business Information Processing, vol. 100, pp. 75–86. Springer, Berlin (2012)Google Scholar
  62. 62.
    Leskovec, J., Adamic, L.A., Huberman, B.A.: The dynamics of viral marketing. TWEB, 1(1), 5 (2007)Google Scholar
  63. 63.
    Lima, A.A.B., Mattoso, M., Valduriez, P.: Adaptive virtual partitioning for OLAP query processing in a database cluster. JIDM 1(1), 75–88 (2010)Google Scholar
  64. 64.
    Manola, F., Miller, E.: RDF Primer. W3C, (2004). Accessed 1 May 2014
  65. 65.
    Mathiesen, P., Watson, J., Bandara, W., Rosemann, M.: Applying social technology to business process lifecycle management. In: Proceedings of the Business Process Management Workshops. Lecture Notes in Business Information Processing, vol. 99, pp. 231–241. Springer, Berlin (2012)Google Scholar
  66. 66.
    Medeiros, A.K.A.D., Aalst, W.M.P.V.D., Pedrinaci, C.: Semantic process mining tools: core building blocks. In: Proceedings of the ECIS, pp. 1953–1964 (2008)Google Scholar
  67. 67.
    Menzies, T., Zimmermann, T.: Goldfish bowl panel: software development analytics. In: Proceedings of the ICSE, pp. 1032–1033 (2012)Google Scholar
  68. 68.
    Mhlen, M., Shapiro, R.: Business process analytics. In: Handbook on Business Process Management 2, International Handbooks on Information Systems, pp. 137–157. Springer, Berlin (2010)Google Scholar
  69. 69.
    Molhanec, M.: Enterprise systems meet social BPM. In: Proceedings of the Advanced Information Systems Engineering Workshops. Lecture Notes in Business Information Processing, vol. 112, pp. 413–424. Springer, Berlin (2012)Google Scholar
  70. 70.
    Momotko, M., Subieta, K.: Process query language: a way to make workflow processes more flexible. In: Proceedings of the ADBIS (2004)Google Scholar
  71. 71.
    Motahari-Nezhad, H.R., Saint-Paul, R., Benatallah, B., Casati, F.: Deriving protocol models from imperfect service conversation logs. IEEE Trans. Knowl. Data Eng. 20, 1683–1698 (2008)CrossRefGoogle Scholar
  72. 72.
    Motahari-Nezhad, H.R., Saint-Paul, R., Casati, F., Benatallah, B.: Event correlation for process discovery from web service interaction logs. VLDB J. 20(3), 417–444 (2011)CrossRefGoogle Scholar
  73. 73.
    Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig latin: a not-so-foreign language for data processing. In: Proceedings of the 2008 ACM SIGMOD international conference on Management of data, pp. 1099–1110. ACM, New York (2008)Google Scholar
  74. 74.
    Ooi, B.C., Yu, B., Li, G.: One table stores all: enabling painless free-and-easy data publishing and sharing. In: Proceedings of the CIDR’07, pp. 142–153 (2007)Google Scholar
  75. 75.
    Papastefanatos, G., Anagnostou, F., Vassiliou, Y., Vassiliadis, P.: Hecataeus: a what-if analysis tool for database schema evolution. In: Proceedings of the CSMR, pp. 326–328 (2008)Google Scholar
  76. 76.
    Papastefanatos, G., Vassiliadis, P., Simitsis, A., Vassiliou, Y.: What-if analysis for data warehouse evolution. In: Proceedings of the DaWaK, pp. 23–33 (2007)Google Scholar
  77. 77.
    Pistore, M., Barbon, F., Bertoli, P., Shaparau, D., Traverso, P.: Planning and monitoring web service composition. In: Proceedings of the AIMSA (2004)Google Scholar
  78. 78.
    PrudHommeaux, E., Seaborne, A. et al.: Sparql query language for rdf. W3C recommendation, (2008)
  79. 79.
    Qu, Q., Zhu, F., Yan, X., Han, J., Yu, P.S., Li, H.: Efficient topological OLAP on information networks. In: Proceedings of the DASFAA (2011)Google Scholar
  80. 80.
    Ravindra, P., Kim, H., Anyanwu, K.: An intermediate algebra for optimizing RDF graph pattern matching on MapReduce. In: Proceedings of the ESWC (2), pp. 46–61 (2011)Google Scholar
  81. 81.
    Romero, O., Abelló, A.: A survey of multidimensional modeling methodologies. IJDWM 5(2), 1–23 (2009)Google Scholar
  82. 82.
    Rozsnyai, S., Slominski, A., Lakshmanan, G.T.: Automated correlation discovery for semi-structured business processes. In: Proceedings of the ICDE Workshops, pp. 261–266 (2011)Google Scholar
  83. 83.
    Schätzle, A., Przyjaciel-Zablocki, M., Lausen, G.: PigSPARQL: mapping SPARQL to Pig Latin. In: Proceedings of the International Workshop on Semantic Web Information Management, SWIM ’11, pp. 4:1–4:8. ACM, New York (2011)Google Scholar
  84. 84.
    Sun, Y., Aggarwal, C.C., Han, J.: Relation strength-aware clustering of heterogeneous information networks with incomplete attributes. PVLDB 5(5), 394–405 (2012)Google Scholar
  85. 85.
    Sun, Y., Han, J., Zhao, P., Yin, Z., Cheng, H., Wu, T.: RankClus: integrating clustering with ranking for heterogeneous information network analysis. In: Proceedings of the EDBT, pp. 565–576 (2009)Google Scholar
  86. 86.
    Sun, Y., Yu, Y., Han, J.: Ranking-based clustering of heterogeneous information networks with star network schema. In: Proceedings of the KDD, pp. 797–806 (2009)Google Scholar
  87. 87.
    Thomsen, E.: OLAP Solutions: Building Multidimensional Information Systems, 2nd edn. John Wiley, New York (2002)Google Scholar
  88. 88.
    Tian, Y., Hankins, R.A., Patel, J.M.: Efficient aggregation for graph summarization. In: Proceedings of the SIGMOD Conference, pp. 567–580 (2008)Google Scholar
  89. 89.
    Vassiliadis, P.: A survey of extract-transform-load technology. IJDWM 5(3), 1–27 (2009)Google Scholar
  90. 90.
    Wang, J., Jin, T., Wong, R. K., Wen, L.: Querying business process model repositories. World Wide Web 17(3), 427–454 (2014)Google Scholar
  91. 91.
    White, T.: Hadoop: The Definitive Guide. O’Reilly Media, Sebastopol (2009). Original editionGoogle Scholar
  92. 92.
    Witkowski, A., Bellamkonda, S., Bozkaya, T., Dorman, G., Folkert, N., Gupta, A., Sheng, L., Subramanian, S.: Spreadsheets in RDBMS for OLAP. In: Proceedings of the SIGMOD Conference, pp. 52–63 (2003)Google Scholar
  93. 93.
    Wynn, M.T., Dumas, M., Fidge, C.J., Hofstede, A.H.M.T., Aalst, W.M.P.V.D.: Business process simulation for operational decision support. In: Proceedings of the Business Process Management Workshops, pp. 66–77 (2007)Google Scholar
  94. 94.
    Xin, D., Shao, Z., Han, J., Liu, H.: C-Cubing: Efficient computation of closed cubes by aggregation-based checking. In: Proceedings of the ICDE (2006)Google Scholar
  95. 95.
    Yan, X., Yu, P.S., Han, J.: Graph indexing: a frequent structure-based approach. In: Proceedings of the SIGMOD Conference, pp. 335–346 (2004)Google Scholar
  96. 96.
    Yu, T.L., Goldberg, D.E.: Dependency structure matrix analysis: offline utility of the dependency structure matrix genetic algorithm. In: Proceedings of the GECCO (2), pp. 355–366 (2004)Google Scholar
  97. 97.
    Yuan, Y., Lin, X., Liu, Q., Wang, W., Yu, J.X., Zhang, Q.: Efficient computation of the skyline cube. In: Proceedings of the VLDB, pp. 241–252 (2005)Google Scholar
  98. 98.
    Zhao, P., Li, X., Xin, D., Han, J.: Graph cube: on warehousing and OLAP multidimensional networks. In: Proceedings of the SIGMOD’11, pp. 853–864 (2011)Google Scholar
  99. 99.
    Zikopoulos, P., Eaton, C.: Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data. McGraw-Hill Osborne Media, New York (2011)Google Scholar
  100. 100.
    Zou, L., Peng, P., Zhao, D.: Top-K possible shortest path query over a large uncertain graph. In: Proceedings of the WISE, pp. 72–86 (2011)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Seyed-Mehdi-Reza Beheshti
    • 1
    Email author
  • Boualem Benatallah
    • 1
  • Hamid Reza Motahari-Nezhad
    • 1
    • 2
  1. 1.School of Computer Science and EngineeringUniversity of New South WalesSydneyAustralia
  2. 2.IBM Almaden Research CenterSan JoseUSA

Personalised recommendations