Advertisement

Distributed and Parallel Databases

, Volume 33, Issue 4, pp 555–581 | Cite as

Approximate querying of RDF graphs via path alignment

  • Roberto De Virgilio
  • Antonio Maccioni
  • Riccardo Torlone
Article

Abstract

A query over RDF data is usually expressed in terms of matching between a graph representing the target and a huge graph representing the source. Unfortunately, graph matching is typically performed in terms of subgraph isomorphism, which makes semantic data querying a hard problem. In this paper we illustrate a novel technique for querying RDF data in which the answers are built by combining paths of the underlying data graph that align with paths specified by the query. The approach is approximate and generates the combinations of the paths that best align with the query. We show that, in this way, the complexity of the overall process is significantly reduced and verify experimentally that our framework exhibits an excellent behavior with respect to other approaches in terms of both efficiency and effectiveness.

Keywords

Path Graph RDF Approximate matching Alignment 

References

  1. 1.
    De Virgilio, R., Giunchiglia, F., Tanca, L. (eds.): Semantic Web Information Management—A Model-Based Perspective. Springer, Berlin (2010)zbMATHGoogle Scholar
  2. 2.
    De Virgilio, R., Guerra, F., Velegrakis, Y. (eds.): Semantic Search Over the Web. Springer, Berlin, Heidelberg (2012)Google Scholar
  3. 3.
    De Virgilio, R., Orsi, G., Tanca, L., Torlone, R.: Nyaya: A system supporting the uniform management of large sets of semantic data. In: ICD., pp. 1309–1312. (2012)Google Scholar
  4. 4.
    Bröcheler, M., Pugliese, A., Subrahmanian, V.S.: Dogma: A disk-oriented graph matching algorithm for rdf databases. In: ISWC, pp. 97–113. (2009)Google Scholar
  5. 5.
    Fan, W., Li, J., Ma, S., Tang, N., Wu, Y., Wu, Y.: Graph pattern matching: from intractable to polynomial time. Proc. VLDB Endow. 3(1), 264–275 (2010)CrossRefGoogle Scholar
  6. 6.
    Zhang, S., Yang, J., Jin, W.: Sapper: subgraph indexing and approximate matching in large graphs. Proc. VLDB Endow. 3(1), 1185–1194 (2010)CrossRefzbMATHGoogle Scholar
  7. 7.
    Wood, P.T.: Query languages for graph databases. SIGMOD Rec. 41(1), 50–60 (2012)CrossRefGoogle Scholar
  8. 8.
    Gallagher, B.: Matching structure and semantics : A survey on graph-based pattern matching. In: Artificial Intelligence, pp. 45–53. (2006)Google Scholar
  9. 9.
    Zhang, S., Li, S., Yang, J.: Gaddi: distance index based subgraph matching in biological networks. In: EDBT, pp. 192–203. (2009)Google Scholar
  10. 10.
    Khan, A., Li, N., Yan, X., Guan, Z., Chakraborty, S., Tao, S.: Neighborhood based fast graph search in large networks. In: SIGMOD, pp. 901–912. (2011)Google Scholar
  11. 11.
    Iordanov, B.: Hypergraphdb: A generalized graph database. In: WAIM Workshops, pp. 25–36. (2010)Google Scholar
  12. 12.
    Fellbaum, C. (ed.): WordNet An Electronic Lexical Database. The MIT Press, Cambridge (1998)Google Scholar
  13. 13.
    Hassanzadeh, O., Consens, M.P.: Linked movie data base (triplification challenge report). In: I-SEMANTICS, pp. 194–196 (2008)Google Scholar
  14. 14.
    Bizer, C., Schultz, A.: The Berlin sparql benchmark. Int. J. Semant. Web. Inf. Syst. 5(2), 1–24 (2009)CrossRefGoogle Scholar
  15. 15.
    Guo, Y., Pan, Z., Heflin, J.: Lubm: a benchmark for owl knowledge base systems. J. Web. Semant. 3(2–3), 158–182 (2005)CrossRefGoogle Scholar
  16. 16.
    Ma, L., Yang, Y., Qiu, Z., Xie, G.T., Pan, Y., Liu, S.: Towards a complete owl ontology benchmark. In: ESWC, pp. 125–139. (2006)Google Scholar
  17. 17.
    Cappellari, P., De Virgilio, R., Maccioni, A., Roantree, M.: A path-oriented rdf index for keyword search query processing. In: DEXA, pp. 366–380. (2011)Google Scholar
  18. 18.
    Zou, L., Chen, L., Özsu, M.T.: Distance-join: pattern match query in a large graph database. Proc. VLDB Endow. 2(1), 886–897 (2009)CrossRefGoogle Scholar
  19. 19.
    Fan, W., Bohannon, P.: Information preserving xml schema embedding. ACM Trans. Database Syst. 33(1) (2008)Google Scholar
  20. 20.
    Tran, T., Wang, H., Rudolph, S., Cimiano, P.: Top-k exploration of query candidates for efficient keyword search on graph-shaped (rdf) data. In: ICDE Conference, pp. 405–416 (2009)Google Scholar
  21. 21.
    Neumann, T., Weikum, G.: x-rdf-3x: fast querying, high update rates, and consistency for rdf databases. Proc. VLDB Endow. 3(1), 256–263 (2010)CrossRefzbMATHGoogle Scholar
  22. 22.
    Yan, X., Yu, P.S., Han, J.: Graph indexing: a frequent structure-based approach. In: SIGMOD, pp. 335–346. (2004)Google Scholar
  23. 23.
    Zhang, S., Hu, M., Yang, J.: Treepi: A novel graph indexing method. In: ICDE, pp. 966–975. (2007)Google Scholar
  24. 24.
    Cheng, J., Ke, Y., Ng, W., Lu, A.: Fg-index: towards verification-free query processing on graph databases. In: SIGMOD, pp. 857–872. (2007)Google Scholar
  25. 25.
    Tian, Y., Patel, J.M.: Tale: A tool for approximate large graph matching. In: ICDE, pp. 963–972. (2008)Google Scholar
  26. 26.
    Zeng, Z., Tung, A.K.H., Wang, J., Feng, J., Zhou, L.: Comparing stars: on approximating graph edit distance. Proc. VLDB Endow. 2(1), 25–36 (2009)CrossRefGoogle Scholar
  27. 27.
    Jin, R., Xiang, Y., Ruan, N., Fuhry, D.: 3-hop: a high-compression indexing scheme for reachability query. In: SIGMOD, pp. 813–826. (2009)Google Scholar
  28. 28.
    Poulovassilis, A., Wood, P.T.: Combining approximation and relaxation in semantic web path queries. In: ISWC, pp. 631–646. (2010)Google Scholar
  29. 29.
    Chan, E.P.F., Lim, H.: Optimization and evaluation of shortest path queries. VLDB J. 16(3), 343–369 (2007)CrossRefzbMATHGoogle Scholar
  30. 30.
    Hu, W., Jian, N., Qu, Y., Wang, Y.: Gmo: A graph matching for ontologies. In: Integrating Ontologies. (2005)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Roberto De Virgilio
    • 1
  • Antonio Maccioni
    • 1
  • Riccardo Torlone
    • 1
  1. 1.Università Roma TreRomeItaly

Personalised recommendations