Advertisement

Distributed and Parallel Databases

, Volume 29, Issue 5–6, pp 397–443 | Cite as

RFID enabled traceability networks: a survey

  • Yanbo WuEmail author
  • Damith C. Ranasinghe
  • Quan Z. Sheng
  • Sherali Zeadally
  • Jian Yu
Article

Abstract

The emergence of radio frequency identification (RFID) technology brings significant social and economic benefits. As a non line of sight technology, RFID provides an effective way to record movements of objects within a networked RFID system formed by a set of distributed and collaborating parties. A trail of such recorded movements is the foundation for enabling traceability applications. While traceability is a critical aspect of majority of RFID applications, realizing traceability for these applications brings many fundamental research and development issues. In this paper, we assess the requirements for developing traceability applications that use networked RFID technology at their core. We propose a set of criteria for analyzing and comparing the current existing techniques including system architectures and data models. We also outline some research opportunities in the design and development of traceability applications.

Keywords

RFID Traceability Networked RFID Internet-of-Things Data model Traceability queries 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, P., Benjelloun, O., Sarma, A.D., Hayworth, C., Nabar, S., Sugihara, T., Widom, J.: Trio: a system for data, uncertainty, and lineage. In: Proceedings of the 32nd International Conference on Very Large Data Bases (VLDB’06), Seoul, Korea (2006) Google Scholar
  2. 2.
    Agrawal, R., Cheung, A., Kailing, K., Schonauer, S.: Towards traceability across sovereign, distributed RFID databases. In: Proceedings of the 10th International Database Engineering and Applications Symposium (IDEAS’06), Delhi, India (2006) Google Scholar
  3. 3.
    Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Hippocratic databases. In: Proceedings of the 28th International Conference on Very Large Data Bases (VLDB’02) (2002) Google Scholar
  4. 4.
    Ahmed, N., Ramachandran, U.: RFID middleware systems: a comparative analysis. In: Unique Radio Innovation for the 21st Century: Building Scalable and Global RFID Networks. Springer, Berlin (2010) Google Scholar
  5. 5.
    Aigner, M., Feldhofer, M.: Secure symmetric authentication for RFID tags. In: Proceedings of the Telecommunication and Mobile Computing (TCMC’05), Graz, Austria (2005) Google Scholar
  6. 6.
    Alexander, K., Gilliam, T., Gramling, K., Grubelic, C.: Applying auto-ID to reduce losses associated with shrink. http://www.autoidlabs.org/uploads/media/IBM-AUTOID-BC-003.pdf
  7. 7.
    Angeles, R.: RFID technologies: supply-chain applications and implementation issues. Inf. Syst. Manag. 22(1), 51–65 (2005) MathSciNetCrossRefGoogle Scholar
  8. 8.
    Buckley, L.M., Olson, C.W.: High tech, high stakes: using technology to smash the fake trade. In: IPWorld, pp. 30–33 (2005) Google Scholar
  9. 9.
    Cantero, J.J., Guijarro, M.A., Plaza, A., Arrebola, G., Baños, J.: A design for secure discovery services in the EPCglobal architecture. In: Unique Radio Innovation for the 21st Century: Building Scalable and Global RFID Networks. Springer, Berlin (2010) Google Scholar
  10. 10.
    Cheng, R., Singh, S., Prabhakar, S.: U-DBMS: a database system for managing constantly-evolving data. In: Proceedings of the 31st International Conference on Very Large Data Bases (VLDB’05) (2005) Google Scholar
  11. 11.
    Cheung, A., Kailing, K., Schönauer, S.: Theseos: a query engine for traceability across sovereign, distributed RFID databases. In: Proceedings of the 23rd International Conference on Data Engineering (ICDE’07), Istanbul, Turkey (2007) Google Scholar
  12. 12.
    Cocci, R.: SPIRE: scalable processing of RFID event stream. In: Proceedings of the 5th RFID Academic Convocation, Brussels, Belgium (2007) Google Scholar
  13. 13.
    Cocci, R., Tran, T., Diao, Y., Shenoy, P.: Efficient data interpretation and compression over RFID streams. In: Proceedings of the 24th International Conference on Data Engineering (ICDE’08), Cancun, Mexico (2008) Google Scholar
  14. 14.
    DeHoratius, N., Raman, A., Ton, Z.: Execution the missing link in retail operations. Calif. Manag. Rev. 43(3), 136–151 (2001) Google Scholar
  15. 15.
    DIALOG: Distributed Information Architectures for cOllaborative loGistics. http://dialog.hut.fi/
  16. 16.
    Dimitriou, T.: A lightweight RFID protocol to protect against traceability and cloning attacks. In: Proceedings of the 1st International Conference on Security and Privacy for Emerging Areas in Communications Networks (SECURECOMM’05), Athens, Greece (2005) Google Scholar
  17. 17.
    EPCGLOBAL: EPCGLOBAL. http://www.EPCGLOBAL.com
  18. 18.
    EPCglobal: EPCglobal Specifications. http://www.epcglobalinc.org/standards/specs/
  19. 19.
    europa.eu: General Food Law—Traceability. http://ec.europa.eu/food/food/foodlaw/traceability/
  20. 20.
    FDA: Combating counterfeit drugs, a report of the food and drug administration. http://www.fda.gov/oc/initiatives/counterfeit/report02_04.html
  21. 21.
    Feldhofer, M., Dominikus, S., Wolkerstorfer, J.: Strong authentication for RFID systems using the AES algorithm. In: Proceedings of the 6th International Workshop on Cryptographic Hardware and Embedded Systems (CHES’04), Cambridge, USA (2004) Google Scholar
  22. 22.
    Finkenzeller, K.: RFID Handbook: Fundamentals and Applications in Contactless Smart Cards and Identification. Wiley, New York (2003) Google Scholar
  23. 23.
    Främling, K., Nyman, J.: From tracking with RFID to intelligent products. In: Proceedings of 14th IEEE International Conference on Emerging Technologies and Factory Automation, Palma de Mallorca, Spain (2009) Google Scholar
  24. 24.
    Globeranger: Globeranger. http://www.Globeranger.com
  25. 25.
    Gonzalez, H., Han, J., Cheng, H., Li, X., Klabjan, D., Wu, T.: Modeling massive RFID data sets: a gateway-based movement graph approach. IEEE Trans. Knowl. Data Eng. 22, 90–104 (2010) CrossRefGoogle Scholar
  26. 26.
    Gonzalez, H., Han, J., Li, X., Klabjan, D.: Warehousing analyzing massive RFID data sets. In: Proceedings of the 22nd International Conference on Data Engineering (ICDE’06), Atlanta, USA (2006) Google Scholar
  27. 27.
    Gotel, O.C.Z., Finkelstein, A.C.W.: An analysis of the requirements traceability problem. In: Proceedings of the 1st International Conference on Requirements Engineering (ICRE’94), Colorado Springs, CO, USA (1994) Google Scholar
  28. 28.
    California Government: California business and professions code sections 4163. http://www.leginfo.ca.gov/calaw.html
  29. 29.
  30. 30.
    Gu, T., Wu, Z., Tao, X., Pung, H.K., Lu, J.: epSICAR: an emerging patterns based approach to sequential, interleaved and concurrent activity recognition. In: IEEE International Conference on Pervasive Computing and Communications, Los Alamitos, CA, USA (2009) Google Scholar
  31. 31.
    Huynh, T., Fritz, M., Schiele, B.: Discovery of activity patterns using topic models. In: Proceedings of the 10th International Conference on Ubiquitous Computing (Ubicomp ’08), Seoul, South Korea (2008) Google Scholar
  32. 32.
    Ilic, A., Andersen, T., Michahelles, F.: Increasing supply-chain visibility with rule-based RFID data analysis. IEEE Internet Comput. 13(1), 31–38 (2009) CrossRefGoogle Scholar
  33. 33.
    Jeffery, S.R., Garofalakis, M., Franklin, M.J.: Adaptive cleaning for RFID data streams. In: Proceedings of the 32nd International Conference on Very Large Data Bases (VLDB’06), Seoul, Korea (2006) Google Scholar
  34. 34.
    Juels, A.: RFID security and privacy: a research survey. IEEE J. Sel. Areas Commun. 24(2), 381–394 (2006) MathSciNetCrossRefGoogle Scholar
  35. 35.
    Juels, A., Pappu, R.: Squealing Euros: privacy protection in RFID-enabled banknotes. In: Financial Cryptography, pp. 103–121. Springer, Berlin (2002) Google Scholar
  36. 36.
    Kelepouris, T., Baynham, T., McFarlane, D.: Track and trace case studies report. http://www.autoidlabs.org/uploads/media/AUTOIDLABS-WP-BIZAPP-035.pdf, 2006
  37. 37.
    Ketzenberg, M., Ferguson, M.: Managing slow moving perishables in the grocery industry. Prod. Oper. Manag. 17(5), 513–521 (2008) CrossRefGoogle Scholar
  38. 38.
    Landt, J.: The history of RFID. IEEE Potentials 24(4), 8–11 (2005) CrossRefGoogle Scholar
  39. 39.
    Lee, C.-H., Chung, C.-W.: Efficient storage scheme and query processing for supply chain management using RFID. In: Proceedings of the 28th ACM SIGMOD International Conference on Management of Data (SIGMOD’08), Vancouver, Canada (2008) Google Scholar
  40. 40.
    Lin, D., Elmongui, H.G., Bertino, E., Ooi, B.C.: Data management in RFID applications. In: Database and Expert Systems Applications. Lecture Notes in Computer Science, vol. 4653, pp. 434–444 (2007) CrossRefGoogle Scholar
  41. 41.
    Lopez, T.S., Ranasinghe, D.C., Patkai, B., McFarlane, D.: Taxonomy technology and applications of smart objects. Inf. Syst. Front. 13(2), 281–300 (2011) CrossRefGoogle Scholar
  42. 42.
    Osaka, K., Takagi, T., Yamazaki, K., Takahashi, O.: An efficient and secure RFID security method with ownership transfer. In: RFID Security, pp. 147–176. Springer, New York (2009) Google Scholar
  43. 43.
    Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented computing: state of the art and research challenges. IEEE Computer 40(11), 38–45 (2007) Google Scholar
  44. 44.
    Ranasinghe, D.C., Cole, P.H.: Networked RFID Systems and Lightweight Cryptography: Raising Barriers to Product Counterfeiting. Springer, Berlin (2008) CrossRefGoogle Scholar
  45. 45.
    Ranasinghe, D.C., Harrison, M., Främling, K., McFarlane, D.: Enabling through life product-instance management: solutions and challenges. J. Netw. Comput. Appl. 34(3) (2011) Google Scholar
  46. 46.
    Ranasinghe, D.C., Sheng, Q.Z., Zeadally, S.: Unique Radio Innovation for the 21st Century: Building Scalable and Global RFID Networks. Springer, Berlin (2010) CrossRefGoogle Scholar
  47. 47.
    Rantzau, R., Kailing, K., Beier, S., Grandison, T.: Discovery services—enabling RFID traceability in EPCglobal networks. In: 13th International Conference on Management of Data (COMAD’06), Delhi, India (2006) Google Scholar
  48. 48.
    Rieback, M.R., Crispo, B., Tanenbaum, A.S.: The evolution of RFID security. IEEE Pervasive Comput. 5(1), 62–69 (2006) CrossRefGoogle Scholar
  49. 49.
    Robson, C., Watanabe, Y., Numao, M.: Parts traceability for manufacturers. In: Proceedings of the 23rd International Conference on Data Engineering (ICDE’07), Istanbul, Turkey (2007) Google Scholar
  50. 50.
    Rosen-Zvi, M., Chemudugunta, C., Griffiths, T., Smyth, P., Steyvers, M.: Learning author-topic models from text corpora. ACM Trans. Inf. Sys. 28, 4:1–4:38 (2010) CrossRefGoogle Scholar
  51. 51.
    Roussos, G.: Networked RFID: Systems, Software and Services. Springer, Berlin (2008) Google Scholar
  52. 52.
    Sheng, Q.Z., Li, X., Zeadally, S.: Enabling next-generation RFID applications: solutions and challenges. IEEE Computer 41(9), 21–28 (2008) Google Scholar
  53. 53.
    Sheng, Q.Z., Wu, Y., Ranasinghe, D.C.: Enabling scalable RFID traceability networks. In: Proceedings of the 24th IEEE International Conference on Advanced Information Networking and Application, Perth, Australia (2010) Google Scholar
  54. 54.
    Stark, J.: Product Lifecycle Management: 21st Century Paradigm for Product Realisation. Springer, Berlin (2004) Google Scholar
  55. 55.
    Sutton, C., McCallum, A.: An introduction to conditional random fields for relational learning. In: Getoor, L., Taskar, B. (eds.) Introduction to Statistical Relational Learning. MIT Press, Cambridge (2007) Google Scholar
  56. 56.
    Wang, F., Liu, P.: Temporal management of RFID data. In: Proceedings of the 31st International Conference on Very Large Data Bases (VLDB’05), Trondheim, Norway (2005) Google Scholar
  57. 57.
    Wang, F., Liu, S., Liu, P.: Complex RFID event processing. VLDB J. 18(4), 913–931 (2009) CrossRefGoogle Scholar
  58. 58.
    Wang, F., Liu, S., Liu, P.: A temporal RFID data model for querying physical objects. Pervasive Mob. Comput. 6(3), 382–397 (2010) CrossRefGoogle Scholar
  59. 59.
    Want, R.: An introduction to RFID technology. IEEE Pervasive Comput. 5(1), 25–33 (2006) CrossRefGoogle Scholar
  60. 60.
    Wei, B., Fedak, G., Cappello, F.: Scheduling independent tasks sharing large data distributed with BitTorrent. In: Proceedings of the 6th IEEE/ACM International Workshop on Grid Computing (GRID’05), Seattle, USA (2005) Google Scholar
  61. 61.
    Zhao, W., Liu, X., Li, X., Liu, D., Zhang, S.: Research on hierarchical P2P based RFID code resolution network and its security. In: Proceedings of the Fourth International Conference on Frontier of Computer Science and Technology, Shanghai, China (2009) Google Scholar
  62. 62.
    Zhao, W., Liu, X., Zhang, S., Chen, B., Li, X.: Hierarchical P2P based RFID code resolution network: structure, tools and application. In: Proceedings of International Symposium on Computer Network and Multimedia Technology (CNMT’09), Wuhan, China (2009) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Yanbo Wu
    • 1
    Email author
  • Damith C. Ranasinghe
    • 1
  • Quan Z. Sheng
    • 1
  • Sherali Zeadally
    • 2
  • Jian Yu
    • 1
    • 3
  1. 1.The University of AdelaideAdelaideAustralia
  2. 2.Department of Computer Science and Information TechnologyUniversity of the District of ColumbiaWashingtonUSA
  3. 3.Swinburne University of TechnologyMelbourneAustralia

Personalised recommendations