Distributed and Parallel Databases

, Volume 29, Issue 1–2, pp 3–30

Efficient tracking of 2D objects with spatiotemporal properties in wireless sensor networks



Wireless sensor networks (WSN) are deployed to detect, monitor and track environmental phenomena such as toxic clouds or dense areas of air pollution in an urban environment. Most phenomena are often modeled as 2D objects (e.g., a fire region based on the temperature sensor readings). People model the objects by their properties, and like to know how the properties change over time. This paper presents a distributed algorithm, which uses deformable curves to track the spatiotemporal changes of 2D objects. In order to save the constrained resources in WSN, our distributed algorithm only allows neighboring nodes to exchange messages to maintain the curve structures. In addition, our algorithm can also support tracking of multiple objects. Based on the in-network tracking of deformable 2D curves, we show that many spatiotemporal properties can be extracted by the in-network aggregation. Our experimental results have confirmed that our approach is resource-efficient with regard to the in-network communication and on-board computation.


Wireless sensor networks Spatial query processing Active contour 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agouris, P., Stefanidis, A., Gyftakis, S.: Differential snakes for change detection in road segments. Photogramm. Eng. Remote Sens. 67, 1391–1399 (2001) Google Scholar
  2. 2.
    Antoine-Santoni, T., Santucci, J.F., de Gentili, E., Silvani, X., Morandini, F.: Performance of a protected wireless sensor network in a fire, analysis of fire spread and data transmission. Sensors 9(8), 5878–5893 (2009). doi:10.3390/s90805878. URL http://www.mdpi.com/1424-8220/9/8/5878 CrossRefGoogle Scholar
  3. 3.
    Chintalapudi, K., Govindan, R.: Localized edge detection in sensor fields. Ad Hoc Netw. 1(2–3), 273–291 (2003) CrossRefGoogle Scholar
  4. 4.
    Cohen, L.D.: On active contour models and balloons. CVGIP: Image Understanding 53(2), 211–218 (1991). doi:10.1016/1049-9660(91)90028-N MATHCrossRefGoogle Scholar
  5. 5.
    Demirbas, M., Ferhatosmanoglu, H.: Peer-to-peer spatial queries in sensor networks. In: P2P ’03: Proceedings of the 3rd International Conference on Peer-to-Peer Computing, p. 32. IEEE Computer Society, Washington (2003) CrossRefGoogle Scholar
  6. 6.
    Ding, M., Chen, D., Xing, K., Cheng, X.: Localized fault-tolerant event boundary detection in sensor networks. Proc. IEEE 2(2), 902–913 (2005). INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and Communications Societies Google Scholar
  7. 7.
    Duckham, M., Nittel, S., Worboys, M.: Monitoring dynamic spatial fields using responsive geosensor networks. In: ACM GIS ’05: Proceedings of the 13th Annual ACM International Workshop on Geographic Information Systems, pp. 51–60. ACM Press, New York (2005). doi:10.1145/1097064.1097073 CrossRefGoogle Scholar
  8. 8.
    Elson, J.E.: Time synchronization in wireless sensor networks. Ph.D. thesis, University of California Los Angeles, Los Angeles, CA (2003) Google Scholar
  9. 9.
    Farah, C., Zhong, C., Worboys, M., Nittel, S.: Detecting topological change using wireless sensor networks. In: Fifth International Conference on Geographic Information (GIScience 2008) (2008) Google Scholar
  10. 10.
    Galton, A.: Qualitative Spatial Change. Oxford University Press, Oxford (2000) Google Scholar
  11. 11.
    Gandhi, S., Hershberger, J., Suri, S.: Approximate isocontours and spatial summaries for sensor networks. In: IPSN ’07: Proceedings of the 6th International Conference on Information Processing in Sensor Networks, pp. 400–409. ACM Press, New York (2007). doi:10.1145/1236360.1236411 CrossRefGoogle Scholar
  12. 12.
    Harrington, B., Huang, Y.: In-network surface simplification for sensor fields. In: GIS ’05: Proceedings of the 13th Annual ACM International Workshop on Geographic Information Systems, pp. 41–50. ACM Press, New York (2005). doi:10.1145/1097064.1097072 CrossRefGoogle Scholar
  13. 13.
    Hellerstein, J.M., Hong, W., Madden, S., Stanek, K.: Beyond average: toward sophisticated sensing with queries. In: Second International Workshop on Information Processing in Sensor Networks, IPSN 2003, pp. 63–79 (2003) Google Scholar
  14. 14.
    Jiang, J., Worboys, M.: Event-based topology for dynamic planar areal objects. Int. J. Geogr. Inf. Sci. 23(1), 33–60 (2009). doi:10.1080/13658810802577247 CrossRefGoogle Scholar
  15. 15.
    Jin, G., Nittel, S.: One adaptive event and event boundary detection algorithm for noisy wireless sensor networks. In: Workshop on Mobile Location-Aware Sensor Networks, Nara, Japan (2006) Google Scholar
  16. 16.
    Jin, G., Nittel, S.: Tracking deformable 2d objects in wireless sensor networks. In: GIS ’08: Proceedings of the 16th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 1–4. ACM Press, New York (2008). doi:10.1145/1463434.1463517 CrossRefGoogle Scholar
  17. 17.
    Karp, B., Kung, H.T.: Gpsr: greedy perimeter stateless routing for wireless networks. In: MobiCom ’00: Proceedings of the 6th Annual International Conference on Mobile Computing and Networking, pp. 243–254. ACM Press, New York (2000). doi:10.1145/345910.345953 CrossRefGoogle Scholar
  18. 18.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vision V1(4), 321–331 (1988). doi:10.1007/BF00133570. URL http://dx.doi.org/10.1007%2FBF00133570 CrossRefGoogle Scholar
  19. 19.
    Kim, Y.J., Govindan, R., Karp, B., Shenker, S.: Geographic routing made practical. In: NSDI’05: Proceedings of the 2nd Conference on Symposium on Networked Systems Design & Implementation, pp. 217–230. USENIX Association, Berkeley (2005) Google Scholar
  20. 20.
    Krishnamachari, B., Iyengar, S.: Distributed Bayesian algorithms for fault-tolerant event region detection in wireless sensor networks. IEEE Trans. Comput. 53(3), 241–250 (2004) CrossRefGoogle Scholar
  21. 21.
    Lefèvre, S., Vincent, N.: Real time multiple object tracking based on active contours. In: Campilho, A.C., Kamel, M.S. (eds.): International Conference on Image Analysis and Recognition, ICIAR 2004, vol. 3212, pp. 606–613. Springer, Berlin (2004) Google Scholar
  22. 22.
    Levis, P., Lee, N., Welsh, M., Culler, D.: Tossim: accurate and scalable simulation of entire tinyos applications. In: SenSys ’03: Proceedings of the 1st International Conference on Embedded Networked Sensor Systems, pp. 126–137. ACM Press, New York (2003). doi:10.1145/958491.958506 CrossRefGoogle Scholar
  23. 23.
    Li, J., Jannotti, J., De Couto, D.S.J., Karger, D.R., Morris, R.: A scalable location service for geographic ad hoc routing. In: Proceedings of the 6th ACM International Conference on Mobile Computing and Networking (MobiCom ’00), Boston, Massachusetts, pp. 120–130 (2000) CrossRefGoogle Scholar
  24. 24.
    Lin, C.Y., Peng, W.C., Tseng, Y.C.: Efficient in-network moving object tracking in wireless sensor networks. IEEE Trans. Mob. Comput. 5(8), 1044–1056 (2006). doi:10.1109/TMC.2006.115 CrossRefGoogle Scholar
  25. 25.
    Liu, Y., Li, M.: Iso-map: Energy-efficient contour mapping in wireless sensor networks. In: ICDCS ’07: Proceedings of the 27th International Conference on Distributed Computing Systems, p. 36. IEEE Computer Society, Washington (2007). doi:10.1109/ICDCS.2007.115 Google Scholar
  26. 26.
    Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: Tag: a tiny aggregation service for ad-hoc sensor networks. SIGOPS Oper. Syst. Rev. 36(SI), 131–146 (2002). doi:10.1145/844128.844142 CrossRefGoogle Scholar
  27. 27.
    McInerney, T., Terzopoulos, D.: T-snakes: topology adaptive snakes. Med. Image Anal. 4, 73–91 (2000) CrossRefGoogle Scholar
  28. 28.
    Ni, L.M., Liu, Y., Lau, Y.C., Patil, A.P.: Landmarc: indoor location sensing using active rfid. In: PERCOM ’03: Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, p. 407. IEEE Computer Society, Washington (2003) CrossRefGoogle Scholar
  29. 29.
    Nittel, S.: A survey of geosensor networks: Advances in dynamic environmental monitoring. Sensors 9(7), 5664–5678 (2009). doi:10.3390/s90705493 CrossRefGoogle Scholar
  30. 30.
    Nowak, R., Mitra, U.: Boundary estimation in sensor networks: theory and methods. In: IPSN, pp. 80–95 (2003) Google Scholar
  31. 31.
    Perrin, D.P., Smith, C.E.: Rethinking classical internal forces for active contour models. In: IEEE Conference on Computer Vision Pattern Recognition, vol. 2, p. 615. IEEE Computer Society, Los Alamitos (2001). doi:10.1109/CVPR.2001.991020 Google Scholar
  32. 32.
    Sharifzadeh, M., Shahabi, C.: Supporting spatial aggregation in sensor network databases. In: GIS ’04: Proceedings of the 12th Annual ACM International Workshop on Geographic Information Systems, pp. 166–175. ACM Press, New York (2004). doi:10.1145/1032222.1032248 CrossRefGoogle Scholar
  33. 33.
    Silberstein, A., Braynard, R., Yang, J.: Constraint chaining: on energy-efficient continuous monitoring in sensor networks. In: SIGMOD Conference, pp. 157–168 (2006) Google Scholar
  34. 34.
    Solis, I., Obraczka, K.: Efficient continuous mapping in sensor networks using isolines. In: The Second Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous 2005), San Diego, CA, USA, pp. 325–332 (2005) CrossRefGoogle Scholar
  35. 35.
    Xu, C., Prince, J.L.: Snakes, shapes, and gradient vector flow. IEEE Trans. Image Process. 7(3), 359–369 (1998) MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Xue, W., Luo, Q., Chen, L., Liu, Y.: Contour map matching for event detection in sensor networks. In: SIGMOD ’06: Proceedings of the 2006 ACM SIGMOD international conference on Management of data, pp. 145–156. ACM Press, New York (2006). doi:10.1145/1142473.1142491 CrossRefGoogle Scholar
  37. 37.
    Zhu, X., Sarkar, R., Gao, J., Mitchell, J.S.B.: Light-weight contour tracking in wireless sensor networks. In: The 27th Annual IEEE Conference on Computer Communications (INFOCOM’08) (2008) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Intelligent Automation, Inc.RockvilleUSA
  2. 2.Department of Spatial Information and EngineeringUniversity of MaineOronoUSA

Personalised recommendations