Distributed and Parallel Databases

, Volume 29, Issue 1–2, pp 151–183 | Cite as

Stream engines meet wireless sensor networks: cost-based planning and processing of complex queries in AnduIN

  • Daniel KlanEmail author
  • Marcel Karnstedt
  • Katja Hose
  • Liz Ribe-Baumann
  • Kai-Uwe Sattler


Wireless sensor networks are powerful, distributed, self-organizing systems used for event and environmental monitoring. In-network query processors like TinyDB offer a user friendly SQL-like application development. Due to the sensor nodes’ resource limitations, monolithic approaches often support only a restricted number of operators. For this reason, complex processing is typically outsourced to the base station. Nevertheless, previous work has shown that complete or partial in-network processing can be more efficient than the base station approach. In this paper, we introduce AnduIN, a system for developing, deploying, and running complex in-network processing tasks. In particular, we present the query planning and execution strategies used in AnduIN, a system combining sensor-local in-network processing and a data stream engine. Query planning employs a multi-dimensional cost model taking energy consumption into account and decides autonomously which query parts will be processed within the sensor network and which parts will be processed at the central instance.


Sensor networks Data streams Power awareness Distributed computation In-network query processing Query planning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abadi, D.J., Ahmad, Y., Balazinska, M., Cherniack, M., Hwang, J.-H., Lindner, W., Maskey, A.S., Rasin, E., Ryvkina, E., Tatbul, N., Xing, Y., Zdonik, St.: The design of the borealis stream processing engine. In: Cidr, Asilomar, CA, pp. 277–289 (2005) Google Scholar
  2. 2.
    Aggarwal, Ch.C., Han, J., Wang, J., Yu, Ph.S.: A framework for clustering evolving data streams. In: Vldb, Berlin, Germany, pp. 81–92 (2003) CrossRefGoogle Scholar
  3. 3.
    Ahmad, Y., Jhingran, A., Berg, B., Maskey, A., Xing, W., Papaemmanouil, O., Xing, Y., Humphrey, M., Rasin, A., Zdonik, St.: Distributed operation in the borealis stream processing engine. In: Sigmod, Baltimore, Maryland, USA (2005) Google Scholar
  4. 4.
    Arasu, A., Babcock, B., Babu, Sh., Datar, M., Ito, K., Nishizawa, I., Rosenstein, J., Widom, J.: Stream: the Stanford stream data manager (demonstration description). In: Sigmod, New York, NY, USA, pp. 665–665. ACM, New York (2003) Google Scholar
  5. 5.
    Arasu, A., Babu, Sh., Widom, J.: The CQL continuous query language: semantic foundations and query execution. Technical report, University of Stanford (2003) Google Scholar
  6. 6.
    Arasu, A., Babcock, B., Babu, Sh., Cieslewicz, J., Ito, K., Motwani, R., Srivastava, U., Widom, J.: Stream: The Stanford Data Stream Management System. Springer, Berlin (2004) Google Scholar
  7. 7.
    Arasu, A., Babu, Sh., Widom, J.: The CQL continuous query language: semantic foundations and query execution. VLDB J. 15(2), 121–142 (2006) CrossRefGoogle Scholar
  8. 8.
    Avnur, R., Hellerstein, J.: Eddies: continuously adaptive query processing. In: Sigmod, Dallas, Texas, USA, pp. 261–272 (2000) CrossRefGoogle Scholar
  9. 9.
    Babcock, B., Datar, M., Motwani, R.: Load shedding techniques for data stream systems. In: Mpds 2003 (2003) Google Scholar
  10. 10.
    Bhatti, Sh., Carlson, J., Dai, H., Deng, J., Rose, J., Sheth, A., Shucker, B., Gruenwald, Ch., Torgerson, A., Han, R.: Mantis os: an embedded multithreaded operating system for wireless micro sensor platforms. Mob. Netw. Appl. 10(4), 563–579 (2005) CrossRefGoogle Scholar
  11. 11.
    Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Icde’01, pp. 421–432 (2001) Google Scholar
  12. 12.
    Carney, D., Centintemel, U., Rasin, A., Zdonik, S.B., Cherniack, M., Stonebraker, M.: Monitoring streams: a new class of data management applications. In: Vldb, Hong Kong, China, pp. 215–226. VLDB Endowment, Hong Kong (2002) Google Scholar
  13. 13.
    Chandrakasan, P., Heinzelman, W.B.: Application-specific protocol architectures for wireless networks. IEEE Trans. Wirel. Commun. 1, 660–670 (2000) Google Scholar
  14. 14.
    Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M., Hellerstein, J., Hong, W., Krishnamurthy, S., Madden, S., Raman, V., Reiss, F., Shah, M.: TelegraphCQ: continuous dataflow processing for an uncertain world. In: Cidr, Asilomar, CA, USA (2003) Google Scholar
  15. 15.
    Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J., Hellerstein, J.M., Hong, W., Krishnamurthy, S., Madden, S.R., Reiss, F., Shah, M.A.: TelegraphCQ: continuous dataflow processing. In: Sigmod, New York, NY, USA, pp. 668–668. ACM, New York (2003) Google Scholar
  16. 16.
    Chen, Y., Zhao, Q.: On the lifetime of wireless sensor networks. IEEE Commun. Lett. 9, 976–978 (2004) CrossRefGoogle Scholar
  17. 17.
    Cheng, Z., Perillo, M., Heinzelman, W.B.: General network lifetime and cost models for evaluating sensor network deployment strategies. IEEE Trans. Mob. Comput. (2008) Google Scholar
  18. 18.
    Chervakova, E., Klan, D., Rossbach, T.: Energy-optimized sensor data processing. In: EUROSSC, pp. 35–38 (2009) Google Scholar
  19. 19.
    Cooper, O., Edakkunni, A., Franklin, M., Hong, W., Jeffery, S., Krishnamurthy, S., Reiss, F., Rizvi, S., Wu, E.: HiFi: a unified architecture for high fan-in systems. In: Vldb, pp. 1357–1360. Demo, Subang Jaya (2004) CrossRefGoogle Scholar
  20. 20.
    Culler, D.E., Hill, J., Buonadonna, P., Szewczyk, R., Woo, A.: A Network-Centric Approach to Embedded Software for Tiny Devices. Lecture Notes in Computer Science, vol. 2211, pp. 114–130 (2001) Google Scholar
  21. 21.
    Dressler, F., Kapitza, R., Daum, M., Strübe, M., Schröder-Preikschat, W., German, R., Meyer-Wegener, Kl.: Query processing and system-level support for runtime-adaptive sensor networks. In: Kivs, Kassel, Germany, pp. 55–66 (2009) Google Scholar
  22. 22.
    Dunkels, A., Groenvall, B., Voigt, Th.: Contiki—a lightweight and flexible operating system for tiny networked sensors. In: LCN, Tampa, FL, USA, pp. 455–462 (2004) Google Scholar
  23. 23.
    Franke, C., Hartung, M., Karnstedt, M., Sattler, K.: Quality-aware mining of data streams. In: Iq, pp. 300–315 (2005) Google Scholar
  24. 24.
    Franke, C., Karnstedt, M., Klan, D., Gertz, M., Sattler, K.-U., Kattanek, W.: In-network detection of anomaly regions in sensor networks with obstacles. In: Btw, Münster, Germany, pp. 367–386 (2009) Google Scholar
  25. 25.
    Giannella, C., Han, J., Robertson, E., Liu, C.: Mining frequent itemsets over arbitrary time intervals in data streams. Technical report, Indiana University (2003) Google Scholar
  26. 26.
    Godfrey, P., Shipley, R., Gryz, J.: Algorithms and analyses for maximal vector computation. VLDB J. 16(1), 5–28 (2007) (Vienna, Austria) CrossRefGoogle Scholar
  27. 27.
    Gu, L., Stankovic, J.A.: T-kernel: providing reliable os support to wireless sensor networks. In: Sensys ’06, New York, NY, USA, pp. 1–14. ACM, New York (2006) CrossRefGoogle Scholar
  28. 28.
    Han, Ch.-Ch., Kumar, R., Shea, R., Kohler, E., Srivastava, M.: A dynamic operating system for sensor nodes. In: Mobisys, New York, NY, USA, pp. 163–176. ACM, New York (2005) CrossRefGoogle Scholar
  29. 29.
    Heinzelman, W.R., Kulik, J., Balakrishnan, H.: Adaptive protocols for information dissemination in wireless sensor networks. In: Mobicom, New York, NY, USA, pp. 174–185. ACM, New York (1999) Google Scholar
  30. 30.
    Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System architecture directions for networked sensors. In: Architectural Support for Programming Languages and Operating Systems, pp. 93–104 (2000) Google Scholar
  31. 31.
    Hillebrandt, Th.: Untersuchung und simulation des zeit- und energie- verhaltens eines msb430-h sensornetzwerkes. Diploma thesis, Department of Mathematics and Computer Science, FU Berlin (2007) Google Scholar
  32. 32.
    Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed diffusion: a scalable and robust communication paradigm for sensor networks. In: Mobicom, New York, NY, USA, pp. 56–67. ACM, New York (2000) CrossRefGoogle Scholar
  33. 33.
    Karnstedt, M., Klan, D., Pölitz, Chr., Sattler, K.-U., Franke, C.: Adaptive burst detection in a stream engine. In: SAC, Hawaii, USA, pp. 1511–1515. ACM, New York (2009) CrossRefGoogle Scholar
  34. 34.
    Klan, D., Hose, K., Karnstedt, M., Sattler, K.: Power-aware data analysis in sensor networks. In: Icde 2010, Long Beach, CA, USA, pp. 1125–1128 (2010) Google Scholar
  35. 35.
    Krämer, J., Seeger, B.: PIPES—a public infrastructure for processing and exploring streams. In: Sigmod, Paris, France, pp. 925–926 (2004) CrossRefGoogle Scholar
  36. 36.
    Lindsey, S., Raghavendra, C.: Pegasis: power-efficient gathering in sensor information systems. In: IEEE Aerospace Conference Proceedings, 2002, vol. 3, pp. 1125–1130 (2002) Google Scholar
  37. 37.
    Lindsey, S., Raghavendra, C., Sivalingam, K.M.: Data gathering algorithms in sensor networks using energy metrics. IEEE Trans. Parallel Distrib. Syst. 13(9), 924–935 (2002) CrossRefGoogle Scholar
  38. 38.
    Madden, S.: The design and evaluation of a query processing architecture for sensor networks. Technical report (2003) Google Scholar
  39. 39.
    Madden, S., Franklin, M.J.: Fjording the stream: an architecture for queries over streaming sensor data (2002) Google Scholar
  40. 40.
    Madden, S., Franklin, M., Hellerstein, J., Hong, W.: TAG: a Tiny AGgregation service for ad-hoc sensor networks. SIGOPS Oper. Syst. Rev. 36(SI), 131–146 (2002) (Saint-Emilion, France) CrossRefGoogle Scholar
  41. 41.
    Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: TinyDB: an acquisitional query processing system for sensor networks. ACM Trans. Database Syst. 30(1), 122–173 (2005) CrossRefGoogle Scholar
  42. 42.
    Perla, E., O’Cathain, A., Carbajo, R.S., Huggard, M., Mc Goldrick, C.: PowerTOSSIM z: realistic energy modelling for wireless sensor network environments. In: Pm2hw2n, pp. 35–42. ACM, New York (2008) CrossRefGoogle Scholar
  43. 43.
    Preparata, F.P., Shamos, M.I.: Computational Geometry—An Introduction. Springer, Berlin (1985) Google Scholar
  44. 44.
    Rajagopalan, R., Varshney, P.K.: Data aggregation techniques in sensor networks: a survey. IEEE Commun. Surv. Tutor. 8, 48–63 (2006) CrossRefGoogle Scholar
  45. 45.
    Park, S., Savvides, A., Srivastava, M.B.: Sensorsim: a simulation framework for sensor networks. In: Modeling, Analysis and Simulation of Wireless and Mobile Systems, Boston, MA, USA, pp. 104–111 (2000) Google Scholar
  46. 46.
    Shnayder, V., Hempstead, M., Chen, B., Allen, G.W., Welsh, M.: Simulating the power consumption of large-scale sensor network applications. In: Sensys, pp. 188–200. ACM, New York (2004) CrossRefGoogle Scholar
  47. 47.
    Sohrabi, K., Gao, J., Ailawadhi, V., Pottie, G.J.: Protocols for self-organization of a wireless sensor network. IEEE Pers. Commun. 7, 16–27 (2000) CrossRefGoogle Scholar
  48. 48.
    Ullman, J.D., Garcia-Molina, H., Widom, J.: Database Systems: The Complete Book. Prentice Hall, Upper Saddle River (2001) Google Scholar
  49. 49.
    Viglas, St.D., Naughton, J.F.: Rate-based query optimization for streaming information sources. In: SIGMOD, New York, NY, USA, pp. 37–48. ACM, New York (2002) Google Scholar
  50. 50.
    Widom, J., Motwani, R.: Query processing, resource management, and approximation in a data stream management system. In: CIDR, Asilomar, CA, USA, pp. 245–256 (2003) Google Scholar
  51. 51.
    Xiang, Sh., Lim, H.B., Tan, K.-L.: Impact of multi-query optimization in sensor networks. In: DMSN, Seoul, Korea, pp. 7–12 (2006) CrossRefGoogle Scholar
  52. 52.
    Yao, Y., Gehrke, J.E.: The cougar approach to in-network query processing in sensor networks. ACM SIGMOD Rec. 31(2), 9–18 (2002) CrossRefGoogle Scholar
  53. 53.
    Yao, Y., Gehrke, J.: Query processing in sensor networks. In: CIDR, Asilomar, CA, USA (January 2003) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Daniel Klan
    • 1
    Email author
  • Marcel Karnstedt
    • 3
  • Katja Hose
    • 2
  • Liz Ribe-Baumann
    • 1
  • Kai-Uwe Sattler
    • 1
  1. 1.Databases and Information Systems GroupIlmenau University of TechnologyIlmenauGermany
  2. 2.Max-Planck-Institut für InformatikSaarbrückenGermany
  3. 3.DERINUI GalwayGalwayIreland

Personalised recommendations