Data Mining and Knowledge Discovery

, Volume 31, Issue 6, pp 1793–1839 | Cite as

Visual analysis of pressure in football

  • Gennady AndrienkoEmail author
  • Natalia Andrienko
  • Guido Budziak
  • Jason Dykes
  • Georg Fuchs
  • Tatiana von Landesberger
  • Hendrik Weber
Part of the following topical collections:
  1. Sports Analytics


Modern movement tracking technologies enable acquisition of high quality data about movements of the players and the ball in the course of a football match. However, there is a big difference between the raw data and the insights into team behaviors that analysts would like to gain. To enable such insights, it is necessary first to establish relationships between the concepts characterizing behaviors and what can be extracted from data. This task is challenging since the concepts are not strictly defined. We propose a computational approach to detecting and quantifying the relationships of pressure emerging during a game. Pressure is exerted by defending players upon the ball and the opponents. Pressing behavior of a team consists of multiple instances of pressure exerted by the team members. The extracted pressure relationships can be analyzed in detailed and summarized forms with the use of static and dynamic visualizations and interactive query tools. To support examination of team tactics in different situations, we have designed and implemented a novel interactive visual tool “time mask”. It enables selection of multiple disjoint time intervals in which given conditions are fulfilled. Thus, it is possible to select game situations according to ball possession, ball distance to the goal, time that has passed since the last ball possession change or remaining time before the next change, density of players’ positions, or various other conditions. In response to a query, the analyst receives visual and statistical summaries of the set of selected situations and can thus perform joint analysis of these situations. We give examples of applying the proposed combination of computational, visual, and interactive techniques to real data from games in the German Bundesliga, where the teams actively used pressing in their defense tactics.


Football data analysis Movement data analysis Collective movement patterns Visual analytics 


  1. Aigner W, Miksch S, Schumann H, Tominski C (2011) Visualization of time-oriented data. Springer Science & Business Media, BerlinCrossRefGoogle Scholar
  2. Andrienko G, Andrienko N (2010) A general framework for using aggregation in visual exploration of movement data. Cartogr J 47(1):22–40CrossRefzbMATHGoogle Scholar
  3. Andrienko G, Andrienko N, Bremm S, Schreck T, Von Landesberger T, Bak P, Keim D (2010) Space-in-time and time-in-space self-organizing maps for exploring spatiotemporal patterns. Comput Graph Forum 29(3):913–922CrossRefGoogle Scholar
  4. Andrienko G, Andrienko N, Heurich M (2011) An event-based conceptual model for context-aware movement analysis. Int J Geogr Inf Sci 25(9):1347–1370CrossRefGoogle Scholar
  5. Andrienko N, Andrienko G, Stange H, Liebig T, Hecker D (2012) Visual analytics for understanding spatial situations from episodic movement data. KI-Künstliche Intell 26(3):241–251CrossRefGoogle Scholar
  6. Andrienko G, Andrienko N, Bak P, Keim D, Wrobel S (2013a) Visual analytics of movement. Springer Science & Business Media, BerlinCrossRefGoogle Scholar
  7. Andrienko G, Andrienko N, Hurter C, Rinzivillo S, Wrobel S (2013b) Scalable analysis of movement data for extracting and exploring significant places. IEEE Trans Vis Comput Graph 19(7):1078–1094CrossRefGoogle Scholar
  8. Andrienko N, Andrienko G, Barrett L, Dostie M, Henzi P (2013c) Space transformation for understanding group movement. IEEE Trans Vis Comput Graph 19(12):2169–2178CrossRefGoogle Scholar
  9. Bak P, Marder M, Harary S, Yaeli A, Ship HJ (2012) Scalable detection of spatiotemporal encounters in historical movement data. Comput Graph Forum 31(3pt1):915–924CrossRefGoogle Scholar
  10. Bialkowski A, Lucey P, Carr GPK, Yue Y, Sridharan S, Matthews IA (2014a) Identifying team style in soccer using formations learned from spatiotemporal tracking data. In: Zhou Z, Wang W, Kumar R, Toivonen H, Pei J, Huang JZ, Wu X (eds) 2014 IEEE international conference on data mining workshops, ICDM workshops 2014, Shenzhen, China, 14 Dec 2014. IEEE, pp 9–14Google Scholar
  11. Bialkowski A, Lucey P, Carr P, Yue Y, Matthews I (2014b) Win at home and draw away: automatic formation analysis highlighting the differences in home and away team behaviors. In: Proceedings of MIT sloan sports analyticsGoogle Scholar
  12. Bialkowski A, Lucey P, Carr P, Yue Y, Sridharan S, Matthews IA (2014c) Large-scale analysis of soccer matches using spatiotemporal tracking data. In: Kumar R, Toivonen H, Pei J, Huang JZ, Wu X, (eds) IEEE international conference on data mining, ICDM 2014, Shenzhen, China, 14–17 Dec 2014. IEEE, pp 725–730Google Scholar
  13. Bojinov I, Bornn L (2016) The pressing game: optimal defensive disruption in soccer.
  14. Carling C, Bloomfield J, Nelsen L, Reilly T (2008) The role of motion analysis in elite soccer. Sports Med 38(10):839–862CrossRefGoogle Scholar
  15. Chung DH, Legg PA, Parry ML, Bown R, Griffiths IW, Laramee RS, Chen M (2015) Glyph sorting: interactive visualization for multi-dimensional data. Inf Vis 14(1):76–90CrossRefGoogle Scholar
  16. Cintia P, Giannotti F, Pappalardo L, Pedreschi D, Malvaldi M (2015a) The harsh rule of the goals: data-driven performance indicators for football teams. In: IEEE international conference on data science and advanced analytics (DSAA), 2015. 36678 2015. IEEE, pp 1–10Google Scholar
  17. Cintia P, Rinzivillo S, Pappalardo L (2015b) A network-based approach to evaluate the performance of football teams. In: Machine learning and data mining for sports analytics workshop, Porto, PortugalGoogle Scholar
  18. Clemente FM, Couceiro MS, Martins FML, Mendes RS (2015) Using network metrics in soccer: a macro-analysis. J Hum Kinet 45(1):123–134CrossRefGoogle Scholar
  19. Crnovrsanin T, Muelder C, Correa C, Ma K-L (2009) Proximity-based visualization of movement trace data. In: IEEE symposium on visual analytics science and technology, 2009. VAST 2009. IEEE, pp 11–18Google Scholar
  20. Di Salvo V, Baron R, Tschan H, Calderon Montero F, Bachl N, Pigozzi F (2007) Performance characteristics according to playing position in elite soccer. Int J Sports Med 28(3):222–227CrossRefGoogle Scholar
  21. Duarte R, Araújo D, Folgado H, Esteves P, Marques P, Davids K (2013) Capturing complex, non-linear team behaviours during competitive football performance. J Syst Sci Complex 26(1):62–72CrossRefGoogle Scholar
  22. Duch J, Waitzman JS, Amaral LAN (2010) Quantifying the performance of individual players in a team activity. PLoS ONE 5(6):e10937, 06CrossRefGoogle Scholar
  23. Dykes JA, Mountain DM (2003) Seeking structure in records of spatio-temporal behaviour: visualization issues, efforts and applications. Comput Stat Data Anal 43(4):581–603MathSciNetCrossRefzbMATHGoogle Scholar
  24. Franks A, Miller A, Bornn L, Goldsberry K et al (2015) Characterizing the spatial structure of defensive skill in professional basketball. Ann Appl Stat 9(1):94–121MathSciNetCrossRefzbMATHGoogle Scholar
  25. Frencken W (2012) H. d. Poel, C. Visscher, and K. Lemmink. Variability of inter-team distances associated with match events in elite-standard soccer. J Sports Sci 30(12):1207–1213CrossRefGoogle Scholar
  26. Gadia SK (1988) A homogeneous relational model and query languages for temporal databases. ACM Trans Database Syst (TODS) 13(4):418–448MathSciNetCrossRefzbMATHGoogle Scholar
  27. Giannotti F, Pedreschi D (2008) Mobility, data mining and privacy: geographic knowledge discovery. Springer Science & Business Media, BerlinCrossRefGoogle Scholar
  28. Grunz A, Memmert D, Perl J (2012) Tactical pattern recognition in soccer games by means of special self-organizing maps. Hum Mov Sci 31(2):334–343 (special issue on network approaches in complex environments)CrossRefGoogle Scholar
  29. Gudmundsson J, Wolle T (2014) Football analysis using spatio-temporal tools. Comput Environ Urban Syst 47:16–27CrossRefGoogle Scholar
  30. Gudmundsson J, Horton M (2016) Spatio-temporal analysis of team sports—a survey. CoRR, abs/1602.06994Google Scholar
  31. Gudmundsson J, Laube P, Wolle T (2011) Computational movement analysis. In: Kresse W, Danko DM (eds) Springer handbook of geographic information. Springer, Berlin, pp 423–438Google Scholar
  32. Guo H, Wang Z, Yu B, Zhao H, Yuan X (2011) Tripvista: triple perspective visual trajectory analytics and its application on microscopic traffic data at a road intersection. In: Visualization symposium (PacificVis), 2011 IEEE Pacific. IEEE, pp 163–170Google Scholar
  33. Güting RH, Schneider M (2005) Moving objects databases. Elsevier, AmsterdamzbMATHGoogle Scholar
  34. Gyarmati L, Kwak H, Rodriguez P (2014) Searching for a unique style in soccer. arXiv:1409.0308
  35. Harrower M, Griffin AL, MacEachren A (1999) Temporal focusing and temporal brushing: assessing their impact in geographic visualization. In: Proceedings of 19th international cartographic conference, Ottawa, Canada, vol 1, pp 729–738Google Scholar
  36. Harrower M, MacEachren A, Griffin AL (2000) Developing a geographic visualization tool to support earth science learning. Cartogr Geogr Inf Sci 27(4):279–293CrossRefGoogle Scholar
  37. Hirano S, Tsumoto S (2005) A clustering method for spatio-temporal data and its application to soccer game records. In: Kuznetsov SO, Ślęzak D, Hepting DH, Mirkin BG (eds) Rough sets, fuzzy sets, data mining, and granular computing. Springer, Berlin, pp 612–621Google Scholar
  38. Horton M, Gudmundsson J, Chawla S, Estephan J (2015) Automated classification of passing in football. In: Cao T, Lim E-P, Zhou Z-H, Ho T-B, Cheung D, Motoda H (eds) Advances in knowledge discovery and data mining: 19th Pacific-Asia conference, PAKDD 2015, Ho Chi Minh City, Vietnam, 19–22 May 2015, proceedings, Part II. Springer International Publishing, pp 319–330Google Scholar
  39. Hurter C, Tissoires B, Conversy S (2009) Fromdady: spreading aircraft trajectories across views to support iterative queries. IEEE Trans Vis Comput Graph 15(6):1017–1024CrossRefGoogle Scholar
  40. Janetzko H, Sacha D, Stein M, Schreck T, Keim DA, Deussen O (2014) Feature-driven visual analytics of soccer data. In: 2014 IEEE conference on visual analytics science and technology (VAST). IEEE, pp 13–22Google Scholar
  41. Jensen CS, Clifford J, Gadia SK, Segev A, Snodgrass RT (1992) A glossary of temporal database concepts. ACM Sigmod Rec 21(3):35–43CrossRefGoogle Scholar
  42. Kang C-H, Hwang J-R, Li K-J (2006) Trajectory analysis for soccer players. In: Sixth IEEE international conference on data mining-workshops (ICDMW’06). IEEE, pp 377–381Google Scholar
  43. Kapler T, Wright W (2005) Geotime information visualization. Inf Vis 4(2):136–146CrossRefGoogle Scholar
  44. Kim S (2004) Voronoi analysis of a soccer game. Nonlinear Anal Model Control 9(3):233–240zbMATHGoogle Scholar
  45. Kim H-C, Kwon O, Li K-J (2011) Spatial and spatiotemporal analysis of soccer. In: Proceedings of the 19th ACM SIGSPATIAL international conference on advances in geographic information systems, GIS ’11. NY, USA, ACM, New York, pp 385–388Google Scholar
  46. Knauf K, Memmert D, Brefeld U (2015) Spatio-temporal convolution kernels. Mach Learn 102(2):247–273MathSciNetCrossRefzbMATHGoogle Scholar
  47. Laube P, Imfeld S, Weibel R (2005) Discovering relative motion patterns in groups of moving point objects. Int J Geogr Inf Sci 19(6):639–668CrossRefGoogle Scholar
  48. Lucey P, Oliver D, Carr P, Roth J, Matthews I (2013) Assessing team strategy using spatiotemporal data. In: Proceedings of the 19th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’13, New York, NY, USA. ACM, pp 1366–1374Google Scholar
  49. Lucey P, Bialkowski A, Monfort M, Carr P, Matthews I (2014) Quality vs quantity: improved shot prediction in soccer using strategic features from spatiotemporal data. In: MIT Sloan sports analytics conference. MIT SloanGoogle Scholar
  50. Lundblad P, Eurenius O, Heldring T (2009) Interactive visualization of weather and ship data. In: 2009 13th international conference on information visualisation. IEEE, pp 379–386Google Scholar
  51. Mitchell-Taverner C (2005) Field hockey techniques and tactics. Human Kinetics, ChampaignGoogle Scholar
  52. Mortensen A, Gaddam VR, Stensland HK, Griwodz C, Johansen D, Halvorsen P (2014) Automatic event extraction and video summaries from soccer games. In: Proceedings of the 5th ACM multimedia systems conference. ACM, pp 176–179Google Scholar
  53. Moura FA, Martins LEB, Anido RO, Ruffino PRC, Barros RML, Cunha SA (2013) A spectral analysis of team dynamics and tactics in Brazilian football. J Sports Sci 31(14):1568–1577 (PMID: 23631771)CrossRefGoogle Scholar
  54. Orellana D, Wachowicz M, Andrienko N, Andrienko G (2009) Uncovering interaction patterns in mobile outdoor gaming. In: International conference on advanced geographic information systems and web services, 2009. GEOWS’09. IEEE, pp 177–182Google Scholar
  55. Owens SG, Jankun-Kelly T (2013) Visualizations for exploration of american football season and play data. In: 1st workshop on sports data visualization, IEEE VISGoogle Scholar
  56. Pena JL, Touchette H (2012) A network theory analysis of football strategies. arXiv:1206.6904
  57. Perin C, Vuillemot R, Fekete J (2013) Soccerstories: a kick-off for visual soccer analysis. IEEE Trans Vis Comput Graph 19(12):2506–2515CrossRefGoogle Scholar
  58. Perl J, Memmert D (2011) Net-based game analysis by means of the software tool soccer. Int J Comput Sci Sport 10(2):77–84Google Scholar
  59. Perl J, Grunz A, Memmert D (2013) Tactics analysis in soccer-an advanced approach. Int J Comput Sci Sport 12(1):33–44Google Scholar
  60. Pileggi H, Stolper CD, Boyle JM, Stasko JT (2012) Snapshot: visualization to propel ice hockey analytics. IEEE Trans Vis Comput Graph 18(12):2819–2828CrossRefGoogle Scholar
  61. Reda K, Tantipathananandh C, Berger-Wolf T, Leigh J, Johnson A (2009) Socioscape—a tool for interactive exploration of spatio-temporal group dynamics in social networks. In: Proceedings of the IEEE information visualization conference (INFOVIS)Google Scholar
  62. Reep C, Benjamin B (1968) Skill and chance in association football. J R Stat Soc Ser A (Gen) 131(4):581–585CrossRefGoogle Scholar
  63. Rusu A, Stoica D, Burns E, Hample B, McGarry K, Russell R (2010) Dynamic visualizations for soccer statistical analysis. In: 2010 14th international conference information visualisation (IV). IEEE, pp 207–212Google Scholar
  64. Rusu A, Stoica D, Burns E (2011) Analyzing soccer goalkeeper performance using a metaphor-based visualization. In: 15th international conference on information visualisation (IV), 2011. IEEE, pp 194–199Google Scholar
  65. Shao L, Sacha D, Neldner B, Stein M, Schreck T (2016) Visual-interactive search for soccer trajectories to identify interesting game situations. Electron Imaging 2016(1):1–10CrossRefGoogle Scholar
  66. Shneiderman B (1994) Dynamic queries for visual information seeking. IEEE Softw 11(6):70–77CrossRefGoogle Scholar
  67. Spretke D, Bak P, Janetzko H, Kranstauber B, Mansmann F, Davidson S (2011) Exploration through enrichment: a visual analytics approach for animal movement. In: Proceedings of the 19th ACM SIGSPATIAL international conference on advances in geographic information systems. ACM, pp 421–424Google Scholar
  68. Stein M, Häußler J, Jäckle D, Janetzko H, Schreck T, Keim DA (2015) Visual soccer analytics: understanding the characteristics of collective team movement based on feature-driven analysis and abstraction. ISPRS Int J Geoinform 4(4):2159CrossRefGoogle Scholar
  69. Taki T, Hasegawa J-I (2000) Visualization of dominant region in team games and its application to teamwork analysis. In: Proceedings of the international conference on computer graphics, CGI ’00, Washington, DC, USA. IEEE Computer Society, pp 227–235Google Scholar
  70. Taki T, Hasegawa J-i, Fukumura T (1996) Development of motion analysis system for quantitative evaluation of teamwork in soccer games. In: Proceedings international conference on image processing, vol 3, 1996. IEEE, pp 815–818Google Scholar
  71. Tominski C, Schumann H, Andrienko G, Andrienko N (2012) Stacking-based visualization of trajectory attribute data. IEEE Trans Vis Comput Graph 18(12):2565–2574CrossRefGoogle Scholar
  72. von Landesberger T, Bremm S, Schreck T, Fellner DW (2014) Feature-based automatic identification of interesting data segments in group movement data. Inf Vis 13(3):190–212CrossRefGoogle Scholar
  73. Voronoï G (1908) Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik 134:198–287MathSciNetzbMATHGoogle Scholar
  74. Ware C, Arsenault R, Plumlee M, Wiley D (2006) Visualizing the underwater behavior of humpback whales. IEEE Comput Graph Appl 26(4):14–18CrossRefGoogle Scholar
  75. Weaver C (2010) Cross-filtered views for multidimensional visual analysis. IEEE Trans Vis Comput Graph 16(2):192–204CrossRefGoogle Scholar
  76. Wei X, Sha L, Lucey P, Morgan S, Sridharan S (2013) Large-scale analysis of formations in soccer. In: 2013 international conference on digital image computing: techniques and applications (DICTA), pp 1–8Google Scholar
  77. Willems N, Van De Wetering H, Van Wijk JJ (2009) Visualization of vessel movements. Comput Graph Forum 28(3):959–966CrossRefGoogle Scholar
  78. Wood J, Dykes J, Slingsby A (2010) Visualisation of origins, destinations and flows with od maps. Cartogr J 47(2):117–129CrossRefGoogle Scholar
  79. Wörner M, Ertl T (2012) Visual analysis of public transport vehicle movement. In: 5th international EuroVis workshop on visual analytics (EuroVA’12), pp 79–83Google Scholar
  80. Yue Z, Broich H, Seifriz F, Mester J (2008) Mathematical analysis of a soccer game. Part i: individual and collective behaviors. Stud Appl Math 121(3):223–243MathSciNetCrossRefzbMATHGoogle Scholar
  81. Zelentsov A, Lobanovsky V, Tkachuk V, Kondratjev A (1989) Tactics and strategy in football. Zdorovja (in Russian). Kyiv, UkraineGoogle Scholar
  82. Zheng Y, Zhou X (2011) Computing with spatial trajectories. Springer Science & Business Media, BerlinCrossRefGoogle Scholar
  83. Zhu G, Huang Q, Xu C, Rui Y, Jiang S, Gao W, Yao H (2007) Trajectory based event tactics analysis in broadcast sports video. In: Proceedings of the 15th international conference on multimedia. ACM, pp 58–67Google Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Fraunhofer Institute IAISSankt AugustinGermany
  2. 2.City University LondonLondonUK
  3. 3.TU EindhovenEindhovenThe Netherlands
  4. 4.TU DarmstadtDarmstadtGermany
  5. 5.DFL Deutsche Fussball Liga GmbHFrankfurtGermany

Personalised recommendations