Data Mining and Knowledge Discovery

, Volume 30, Issue 6, pp 1480–1519 | Cite as

Online route prediction based on clustering of meaningful velocity-change areas

  • Fernando Terroso-Saenz
  • Mercedes Valdes-Vela
  • Antonio F. Skarmeta-Gomez
Article

Abstract

Personal route prediction has emerged as an important topic within the mobility mining domain. In this context, many proposals apply an off-line learning process before being able to run the on-line prediction algorithm. The present work introduces a novel framework that integrates the route learning and the prediction algorithm in an on-line manner. By means of a thin-client and server architecture, it also puts forward a new concept for route abstraction based on the detection of spatial regions where certain velocity features of routes frequently change. The proposal is evaluated by real-world and synthetic datasets and compared with a well-established mechanism by exhibiting quite promising results.

Keywords

Route prediction Density-based clustering Mobility mining 

References

  1. Alvarez-Garcia J, Ortega J, Gonzalez-Abril L, Velasco F (2010) Trip destination prediction based on past GPS log using a Hidden Markov Model. Expert Syst. Appl. 37(12):8166–8171. doi:10.1016/j.eswa.2010.05.070 CrossRefGoogle Scholar
  2. Barouni F, Moulin B (2012) An extended complex event processing engine to qualitatively determine spatiotemporal patterns. In: Proceedings of Global Geospatial Conference 2012, Quebec City, pp 201–2133Google Scholar
  3. Carroll A, Heiser G (2010) An analysis of power consumption in a smartphone. In: Proceedings of the 2010 USENIX Conference on USENIX Annual Technical Conference, USENIX Association, Boston, MA, USENIXATC’10, pp 21–21, http://dl.acm.org/citation.cfm?id=1855840.1855861
  4. Chen L, Lv M, Ye Q, Chen G, Woodward J (2011) A personal route prediction system based on trajectory data mining. Inf. Sci. 181(7):1264–1284, doi:10.1016/j.ins.2010.11.035
  5. Civilis A, Jensen CS, Pakalnis S (2005) Techniques for efficient road-network-based tracking of moving objects. IEEE Trans Knowl Data Eng 17(5):698–712CrossRefGoogle Scholar
  6. Deguchi Y, Kuroda K, Shouji M, Kawabe T (2004) HEV charge/discharge control system based on navigation information. Technical report, SAE Technical PaperGoogle Scholar
  7. de Vries G (2012) Kernel methods for vessel trajectories. PhD thesis, University of AmsterdamGoogle Scholar
  8. Dunkel J, Bruns R, Stipkovic S (2013) Event-based smartphone sensor processing for ambient assisted living. In: 2013 IEEE Eleventh international symposium on autonomous decentralized systems (ISADS), pp 1–6. doi:10.1109/ISADS.2013.6513422
  9. Etzion O, Niblett P (2010) Event processing in action, 1st edn. Manning Publications Co., GreenwichGoogle Scholar
  10. Giannotti F, Nanni M, Pinelli F, Pedreschi D (2007) Trajectory pattern mining. In: Proceedings of the 13th ACM SIGKDD international conference on knowledge discovery and data mining, KDD 07. ACM, New York, pp 330–339. doi:10.1145/1281192.1281230
  11. Guttman A (1984) R-trees: A dynamic index structure for spatial searching. In: Proceedings of the 1984 ACM SIGMOD international conference on management of data, SIGMOD ’84. ACM, New York, pp 47–57. doi:10.1145/602259.602266
  12. He W, Li D, Zhang T, An L, Guo M, Chen G (2012) Mining regular routes from gps data for ridesharing recommendations. In: Proceedings of the ACM SIGKDD international workshop on urban computing, UrbComp ’12. ACM, New York, pp 79–86. doi:10.1145/2346496.2346510
  13. Hendawi AM, Mokbel MF (2012) Predictive spatio-temporal queries: a comprehensive survey and future directions. In: Proceedings of the First ACM SIGSPATIAL international workshop on mobile geographic information systems, MobiGIS ’12. ACM, New York, pp 97–104. doi:10.1145/2442810.2442828
  14. Hong K, Lillethun D, Ramachandran U, Ottenwälder B, Koldehofe B (2013) Opportunistic spatio-temporal event processing for mobile situation awareness. In: Proceedings of the 7th ACM international conference on distributed event-based systems, DEBS ’13. ACM, New York, pp 195–206. doi:10.1145/2488222.2488266
  15. Jeung H, Shen H, Zhou X (2007) Mining trajectory patterns using Hidden Markov Models. In: Song I, Eder J, Nguyen T (eds) Data warehousing and knowledge discovery. Lecture Notes in Computer Science, vol 4654. Springer, Berlin, pp 470–480Google Scholar
  16. Körner C, May M, Wrobel S (2012) Spatiotemporal modeling and analysis-introduction and overview. KI - Künstliche Intell 26(3):215–221. doi:10.1007/s13218-012-0215-2 CrossRefGoogle Scholar
  17. Krumm J (2006) Real time destination prediction based on efficient routes. Technival Report, SAE Technical PaperGoogle Scholar
  18. Krumm J (2010) Where will they turn: predicting turn proportions at intersections. Pers. Ubiquitous Comput. 14(7):591–599. doi:10.1007/s00779-009-0248-1 CrossRefGoogle Scholar
  19. Krumm J, Gruen R, Delling D (2013) From destination prediction to route prediction. J Locat Based Serv 7(2):98–120. doi:10.1080/17489725.2013.788228 CrossRefGoogle Scholar
  20. Lin M, Hsu WJ (2014) Mining GPS data for mobility patterns: a survey. Pervasive Mobile Comput 12(0):1–16. doi:10.1016/j.pmcj.2013.06.005
  21. Lin M, Hsu WJ, Lee ZQ (2012) Predictability of individuals’ mobility with high-resolution positioning data. In: Proceedings of the 2012 ACM conference on ubiquitous computing, UbiComp ’12. ACM, New York, pp 381–390. doi:10.1145/2370216.2370274
  22. Liou SC, Huang YM (2005) Trajectory predictions in mobile networks. Int J Inf Technol 11(11):109–122Google Scholar
  23. Pappalardo L, Simini F, Rinzivillo S, Pedreschi D, Giannotti F, Barabási AL (2015) Returners and explorers dichotomy in human mobility. Nat Commun 6Google Scholar
  24. Pham N, Ganti R, Uddin Y, Nath S, Abdelzaher T (2010) Privacy-preserving reconstruction of multidimensional data maps in vehicular participatory sensing. In: Silva J, Krishnamachari B, Boavida F (eds) Wireless sensor networks. Lecture Notes in Computer Science, vol 5970. Springer, Berlin, pp 114–130Google Scholar
  25. Qiu D, Papotti P, Blanco L (2013) Future locations prediction with uncertain data. In: Blockeel H, Kersting K, Nijssen S, Železnỳ F (eds) Machine learning and knowledge discovery in databases. Lecture Notes in Computer Science, vol 8188. Springer, Berlin, pp 417–432Google Scholar
  26. Song C, Qu Z, Blumm N, Barabási AL (2010) Limits of predictability in human mobility. Science 327(5968):1018–1021MathSciNetCrossRefMATHGoogle Scholar
  27. Steinfeld A, Manes D, Green P, Hunter D (1996) Destination entry and retrieval with the ali-scout navigation system. Technical Report UMTRI-96-30. University of Michigan, Transportation Research Institute (UMTRI)Google Scholar
  28. Stipkovic S, Bruns R, Dunkel J (2013) Pervasive computing by mobile complex event processing. In: 2013 IEEE 10th international conference on e-business engineering (ICEBE), pp 318–323. doi:10.1109/ICEBE.2013.49
  29. Terroso-Saenz F, Valdes-Vela M, Campuzano F, Botia JA, Skarmeta-Gómez AF (2015) A complex event processing approach to perceive the vehicular context. Inf Fusion 21(0):187–209. doi:10.1016/j.inffus.2012.08.008
  30. Wang L, Hu K, Ku T, Yan X (2013) Mining frequent trajectory pattern based on vague space partition. Knowl Based Syst 50(0):100–111, doi:10.1016/j.knosys.2013.06.002
  31. Xue A, Zhang R, Zheng Y, Xie X, Huang J, Xu Z (2013) Destination prediction by sub-trajectory synthesis and privacy protection against such prediction. In: 2013 IEEE 29th international conference on data engineering (ICDE), pp 254–265. doi:10.1109/ICDE.2013.6544830
  32. Zhang J, Goodchild MF (2002) Uncertainty in geographical information. Taylor & Francis, LondonCrossRefGoogle Scholar
  33. Zheng Y, Xie X, Ma WY (2010) Geolife: a collaborative social networking service among user, location and trajectory. IEEE Data Eng Bull 33(2):32–39Google Scholar
  34. Zhou C, Frankowski D, Ludford P, Shekhar S, Terveen L (2004) Discovering personal gazetteers: an interactive clustering approach. In: Proceedings of the 12th annual ACM international workshop on Geographic information systems. ACM, pp 266–273Google Scholar
  35. Zhou J, Tung AK, Wu W, Ng WS (2013) A “semi-lazy” approach to probabilistic path prediction in dynamic environments. In: Proceedings of the 19th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’13. ACM, New York, pp 748–756. doi:10.1145/2487575.2487609
  36. Ziebart BD, Maas AL, Dey AK, Bagnell JA (2008) Navigate like a cabbie: Probabilistic reasoning from observed context-aware behavior. In: Proceedings of the 10th international conference on ubiquitous computing, UbiComp ’08. ACM, New York, pp 322–331. doi:10.1145/1409635.1409678

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Fernando Terroso-Saenz
    • 1
  • Mercedes Valdes-Vela
    • 1
  • Antonio F. Skarmeta-Gomez
    • 1
  1. 1.Department of Information and Communication Engineering, Faculty of Computer ScienceUniversity of MurciaMurciaSpain

Personalised recommendations