Advertisement

Data Mining and Knowledge Discovery

, Volume 28, Issue 5–6, pp 1222–1265 | Cite as

Ontology of core data mining entities

  • Panče Panov
  • Larisa Soldatova
  • Sašo Džeroski
Article

Abstract

In this article, we present OntoDM-core, an ontology of core data mining entities. OntoDM-core defines the most essential data mining entities in a three-layered ontological structure comprising of a specification, an implementation and an application layer. It provides a representational framework for the description of mining structured data, and in addition provides taxonomies of datasets, data mining tasks, generalizations, data mining algorithms and constraints, based on the type of data. OntoDM-core is designed to support a wide range of applications/use cases, such as semantic annotation of data mining algorithms, datasets and results; annotation of QSAR studies in the context of drug discovery investigations; and disambiguation of terms in text mining. The ontology has been thoroughly assessed following the practices in ontology engineering, is fully interoperable with many domain resources and is easy to extend. OntoDM-core is available at http://www.ontodm.com.

Keywords

Ontology of data mining Mining structured data Domain ontology  

Notes

Acknowledgments

We would like to acknowledge the support of the European Commission through the project MAESTRA—Learning from Massive, Incompletely annotated, and Structured Data (Grant Number ICT-2013-612944).

References

  1. Avery MA, Alvim-Gaston M, Woolfrey JR (1999) Sythesis and structure-activity relationships of peroxidic antimalarials based on artemisinin. Adv Med Chem 4:125–217. doi: 10.1016/S1067-5698(99)80005-4 CrossRefGoogle Scholar
  2. Avery MA, Alvim-Gaston M, Rodrigues CR, Barreiro EJ, Cohen FE, Sabnis YA, Woolfrey JR (2002) Structure activity relationships of the antimalarial agent artemisinin: the development of predictive in vitro potency models using CoMFA and HQSAR methodologies. J Med Chem 45:292–303. doi: 10.1021/jm0100234 CrossRefGoogle Scholar
  3. Bakir GH, Hofmann T, Schölkopf B, Smola AJ, Taskar B, Vishwanathan SVN (2007) Predicting structured data. Neural information processing. The MIT Press, Cambridge, MAGoogle Scholar
  4. Bayardo RJ (2002) The many roles of constraints in data mining: letter from the guest editor (special issue on constraints in data mining). SIGKDD Explorations 4(1):i–iiGoogle Scholar
  5. Bernstein A, Provost F, Hill S (2005) Toward intelligent assistance for a data mining process: an ontology-based approach for cost-sensitive classification. IEEE Trans Knowl Data Eng 17(4):503–518. doi: 10.1109/TKDE.2005.67 CrossRefGoogle Scholar
  6. Blockeel H, DeRaedt L, Ramon J (1998) Top-down induction of clustering trees. In: Proceedings of the 15th international conference on machine learning, Morgan Kaufmann, pp 55–63Google Scholar
  7. Brezany P, Janciak I, Tjoa AM (2007) Ontology-based construction of grid data mining workflows. In: Data mining with ontologies: implementations, findings and frameworks, IGI Global, pp 182–210. doi:  10.4018/978-1-59904-618-1.ch010
  8. Brinkman RR et al (2010) Modeling of biomedical experimental processes with OBI. J Biomed Semant 1(Suppl 1):S7. doi: 10.1186/2041-1480-1-S1-S7 CrossRefGoogle Scholar
  9. Button K, Deursen RW, Soldatova L, Spasić I (2013) TRAK ontology: defining standard care for the rehabilitation of knee conditions. J Biomed Inf 46(4):615–625. doi: 10.1016/j.jbi.2013.04.009 CrossRefGoogle Scholar
  10. Cannataro M, Comito C (2003) A data mining ontology for GRID programming. In: Proceedings of 1st international workshop on semantics in peer-to-peer and grid computing, pp 113–134Google Scholar
  11. Caruana R (1997) Multitask learning. Mach Learn 28:41–75. doi: 10.1023/A:1007379606734 CrossRefGoogle Scholar
  12. Chapman P, et al. (1999) The CRISP-DM process model. Discussion paper. http://www.crisp-dm.org
  13. Courtot M et al (2011) MIREOT: the minimum information to reference an external ontology term. Appl Ontol 6(1):23–33. doi: 10.3233/AO-2011-0087 Google Scholar
  14. Demšar D et al (2006) Using multi-objective classification to model communities of soil. Ecol Model 191(1):131–143. doi: 10.1016/j.ecolmodel.2005.08.017 CrossRefGoogle Scholar
  15. Diamantini C, Potena D (2008) Semantic annotation and services for KDD tools sharing and reuse. In: ICDMW ’08: proceedings of the 2008 IEEE ICDM workshops, IEEE computer society, pp 761–770. doi: 10.1109/ICDMW.2008.43
  16. Dietterich T et al (2008) Structured machine learning: the next ten years. Mach Learn 73:3–23. doi: 10.1007/s10994-008-5079-1 CrossRefGoogle Scholar
  17. Džeroski S (2007) Towards a general framework for data mining. In: KDID 2006—revised selected and invited papers, LNCS, vol 4747, Springer, pp 259–300. doi: 10.1007/978-3-540-75549-4_16
  18. Ford M, Philips L, Ste A (2004) Optimising the EVA descriptor for prediction of biological activity. Organ Biomol Chem 2:3301–3311. doi: 10.1039/B410053K CrossRefGoogle Scholar
  19. Fox MS, Grüninger M (1994) Ontologies for enterprise integration. In: CoopIS, pp 82–89Google Scholar
  20. Gangemi A, Guarino N, Masolo C, Oltramari A, Schneider L (2002) Sweetening ontologies with DOLCE. In: Proceedings of 13th international conference on knowledge engineering and knowledge management. Ontologies and the semantic web, pp 166–181. doi: 10.1007/3-540-45810-7_18
  21. Garcia J, Garcia-Penalvo FJ, Theron R (2010) A survey on ontology metrics. In: Communications in computer and information science, vol 111, Springer, Berlin, pp 22–27. doi: 10.1007/978-3-642-16318-0_4
  22. Golbraikh A, Tropsha A (2002) Beware of \(q^2\)!. J Mol Gr Mod 20:269–276. doi:  10.1016/S1093-3263(01)00123-1 CrossRefGoogle Scholar
  23. Grenon P, Smith B, Goldberg L (2004) Biodynamic ontology: applying BFO in the biomedical domain. In: Pisanelli D, (ed) Ontologies in medicine, vol 102. IOS, Amsterdam, pp 20–38. doi: 10.3233/978-1-60750-945-5-20
  24. Gruber T (2009) Ontology. In: Ling L, Tamer Özsu M (eds) The encyclopedia of database systems. Springer, pp 1963–1965. doi: 10.1007/978-0-387-39940-9_1318
  25. Grüninger M, Fox M (1995) Methodology for the design and evaluation of ontologies. In: IJCAI’95, workshop on basic ontological issues in knowledge sharingGoogle Scholar
  26. Guha R, Jurs PC (2004) Development of QSAR models to predict and interpret the biological activity of artemisinin analogues. J Chem Inf Comput Sci 44:1440–1449. doi: 10.1021/ci0499469 Google Scholar
  27. Guha R, Howard MT, Hutchison GR, Murray-Rust P, Rzepa H, Steinbeck C, Wegner J, Willighagen EL (2006) The blue obelisk-interoperability in chemical informatics. J Chem Inf Model 46(3):991–998. doi: 10.1021/ci050400b CrossRefGoogle Scholar
  28. Hand DJ, Smyth P, Mannila H (2001) Principles of data mining. MIT Press, Cambridge, MAGoogle Scholar
  29. Hilario M, Nguyen P, Do H, Woznica A, Kalousis A (2011) Ontology-based meta-mining of knowledge discovery workflows. In: Meta-learning in computational intelligence, studies in computational intelligence, vol 358, Springer, Berlin, pp 273–315. doi: 10.1007/978-3-642-20980-2_9
  30. ISO (2007) ISO/IEC 11404:2007—Information Technology—General-Purpose datatypes (GPD). Tech. rep, International Organization for StandardizationGoogle Scholar
  31. Karalic A, Bratko I (1997) First order regression. Mach Learn 26:147–176. doi: 10.1023/A:1007365207130 CrossRefzbMATHGoogle Scholar
  32. Keet CM, Lawrynowicz A, d’Amato C, Hilario M (2013) Modeling issues and choices in the data mining optimisation ontology. In: 8th workshop on OWL: experiences and directions (OWLED-13), 26–27 May 2013, MontpellierGoogle Scholar
  33. Kietz JU, F Serban AB, Fischer S (2010) Data mining workflow templates for intelligent discovery assistance and Auto-Experimentation. In: ECML/PKDD 2010 workshop on third generation data mining: towards service-oriented knowledge discovery (SoKD-10), pp 1–12Google Scholar
  34. King RD, Muggleton SH, Srinivasan A, Sternberg MJ (1996) Structure-activity relationships derived by machine learning: the use of atoms and their bond connectivities to predict mutagenicity by inductive logic programming. Proc Natl Acad Sci 93(1):438–442. doi: 10.1073/pnas.93.1.438 CrossRefGoogle Scholar
  35. King RD et al (2009) The automation of science. Science 324(5923):85–89. doi: 10.1126/science.1165620 CrossRefGoogle Scholar
  36. Kocev D, Džeroski S, White M, Newell G, Griffioen P (2009) Using single and multi-target regression trees and ensembles to model a compound index of vegetation condition. Ecol Model 220(8):1159–1168. doi: 10.1016/j.ecolmodel.2009.01.037 CrossRefGoogle Scholar
  37. Kocev D, Vens C, Struyf J, Džeroski S (2013) Tree ensembles for predicting structured outputs. Pattern Recognit 46(3):817–833. doi: 10.1016/j.patcog.2012.09.023 CrossRefGoogle Scholar
  38. Kremen P, Sirin E (2008) SPARQL-DL implementation experience. In: Proceedings of the fourth OWLED workshop on OWL: experiences and directions volume 496 of CEUR workshop proceedingsGoogle Scholar
  39. Kriegel HP et al (2007) Future trends in data mining. Data Min Knowl Discov 15:87–97. doi: 10.1007/s10618-007-0067-9 CrossRefMathSciNetGoogle Scholar
  40. López MF, Gómez-Pérez A, Sierra JP, Sierra AP (1999) Building a chemical ontology using methontology and the ontology design environment. IEEE Intell Syst 14:37–46. doi: 10.1109/5254.747904 CrossRefGoogle Scholar
  41. Madjarov G, Kocev D, Gjorghevikj D, Džeroski S (2012) An extensive experimental comparison of methods for multi-label learning. Pattern Recognit 45(9):3084–3104. doi: 10.1016/j.patcog.2012.03.004 CrossRefGoogle Scholar
  42. Malone J, Parkinson H (2010) Reference and spplication ontologies. Ontogenesis. http://ontogenesis.knowledgeblog.org/295
  43. Mannila H, Toivonen H (1997) Levelwise search and borders of theories in knowledge discovery. Data Min Knowl Discov 1(3):241–258. doi: 10.1023/A:1009796218281 CrossRefGoogle Scholar
  44. Mizoguchi R (2010) Yamato: yet another more advanced top-level ontology. http://www.ei.sanken.osaka-u.ac.jp/hozo/onto_library/YAMATO101216
  45. Panov P (2012) A modular ontology of data mining. PhD thesis, Jožef Stefan Iternational Postgraduate School, Ljubljana, SloveniaGoogle Scholar
  46. Panov P, Džeroski S, Soldatova LN (2008) OntoDM: an ontology of data mining. In: ICDMW ’08: proceedings of the 2008 IEEE ICDM workshops. IEEE Computer Society, pp 752–760Google Scholar
  47. Panov P, Soldatova L, Džeroski S (2010) Representing entities in the OntoDM data mining ontology. In: Inductive databases and constraint-based data mining, Springer, New York, pp 27–58. doi: 10.1007/978-1-4419-7738-0_2
  48. Panov P, Soldatova L, Džeroski S (2013) OntoDM-KDD: ontology for representing the knowledge discovery process. In: DS 2013, LNAI 8140, Springer, Berlin, pp 126–140. doi: 10.1007/978-3-642-40897-7_9
  49. Podpečan V, Zemenova M, Lavrač N (2012) Orange4WS environment for service-oriented data mining. Comput J 55(1):82–98. doi: 10.1093/comjnl/bxr077 CrossRefGoogle Scholar
  50. Qi D, King RD, Hopkins AL, Bickerton GRJ, Soldatova LN (2010) An ontology for description of drug discovery investigations. J Integr Bioinf 7(3):126. doi: 10.2390/biecoll-jib-2010-126 Google Scholar
  51. Robinson P, Bauer S (2011) Introduction to bio-ontologies. Chapman & Hall, LondonGoogle Scholar
  52. Serban F, Vanschoren J, Kietz J, Bernstein A (2013) A survey of intelligent assistants for data analysis. ACM Comput Surv 45(3):31.1–31.35. doi: 10.1145/2480741.2480748 CrossRefGoogle Scholar
  53. Silla C, Freitas A (2011) A survey of hierarchical classification across different application domains. Data Min Know Discov 22:31–72. doi: 10.1007/s10618-010-0175-9 CrossRefzbMATHMathSciNetGoogle Scholar
  54. Sirin E, Parsia B (2007) SPARQL-DL: SPARQL query for OWL-DL. In: 3rd OWL experiences and directions workshop (OWLED-2007)Google Scholar
  55. Slavkov I, Gjorgjioski V, Struyf J, Džeroski S (2010) Finding explained groups of time-course gene expression profiles with predictive clustering trees. Mol BioSyst 6:729–740. doi: 10.1039/b913690h CrossRefGoogle Scholar
  56. Smith B et al (2005) Relations in biomedical ontologies. Genome Biol 6(5):R46. doi: 10.1186/gb-2005-6-5-r46 CrossRefGoogle Scholar
  57. Smith B et al (2007) The OBO foundry: coordinated evolution of ontologies to support biomedical data integration. Nat Biotech 25(11):1251–1255. doi: 10.1038/nbt1346 CrossRefGoogle Scholar
  58. Smith B, Ceusters W (2010) Ontological realism: a methodology for coordinated evolution of scientific ontologies. Appl Ontol 5(3–4):139–188. doi: 10.3233/AO-2010-0079 Google Scholar
  59. Soldatova LN, Lord Ph, Sansone SA, Stephens SM, Shah NH (2010) Selected papers from the 12th annual bio-ontologies meeting. J Biomed Semant 1(Suppl 1):I1CrossRefGoogle Scholar
  60. Spjuth O, Willighagen EL, Guha R, Eklund M, Wikberg JES (2010) Towards interoperable and reproducible QSAR analyses: exchange of data sets. J Cheminf 2:5. doi: 10.1186/1758-2946-2-5 CrossRefGoogle Scholar
  61. Struyf J, Dzeroski S (2005) Constraint based induction of multi-objective regression trees. In: KDID 2005. Lecture notes in computer science, vol 3933, Springer, pp 222–233. doi: 10.1007/11733492_13
  62. Suarez-Figueroa M C, Gomez-Perez A, Motta E, Gangemi A (2012) The NeOn methodology for ontology engineering. In: Ontology engineering in a networked world, pp 9–34. doi: 10.1007/978-3-642-24794-1_2
  63. Sure Y, Staab S, Struder R (2009) Ontology engineering methodology. In: Staab S, Struder R (eds) Handbook on ontologies, 2nd edn. International Handbooks on Information Systems. Springer, Berlin, Heidelberg, pp 135–152. doi: 10.1007/978-3-540-92673-3_6
  64. Tropsha A (2010) Best practices for developing predictive QSAR models. Oral presentation. http://infochim.u-strasbg.fr/CS3_2010/OralPDF/Tropsha_CS3_2010
  65. Tsoumakas G, Katakis I (2007) Multi label classification: an overview. Int J Data Wareh Min 3(3):1–13. doi: 10.4018/978-1-60566-058-5.ch021 CrossRefGoogle Scholar
  66. Uschold M, King M (1995) Towards a methodology for building ontologies. In: Workshop on basic ontological issues in knowledge sharing, held in conjunction with IJCAI-95Google Scholar
  67. Vanschoren J, Blockeel H, Pfahringer B, Holmes G (2012) Experiment databases—-a new way to share, organize and learn from experiments. Mach Learn 87(2):127–158. doi: 10.1007/s10994-011-5277-0 CrossRefzbMATHMathSciNetGoogle Scholar
  68. Vanschoren J, Soldatova L (2010) Exposé: an ontology for machine learning experimentation. Presentation at the Data Mining Jamboree, Ljubljana 2010. http://kt.ijs.si/janez_kranjc/dmo_jamboree/Expose
  69. Vens C, Struyf J, Schietgat L, Džeroski S, Blockeel H (2008) Decision trees for hierarchical multi-label classification. Mach Learn 73(2):185–214. doi: 10.1007/s10994-008-5077-3 CrossRefGoogle Scholar
  70. Yang Q, Wu X (2006) 10 challenging problems in data mining research. Int J Inf Technol Decis Mak 5(4):597–604. doi: 10.1142/S0219622006002258 CrossRefGoogle Scholar
  71. Young D, Martin T, Venkatapathy R, Harten P (2008) Are the chemical structures in your QSAR correct? QSAR Comb Sci 27(11–12):1337–1345. doi: 10.1002/qsar.200810084 CrossRefGoogle Scholar
  72. Žáková M, Kremen P, Železný F, Lavrač N (2010) Automating knowledge discovery workflow composition through ontology-based planning. IEEE Trans Autom Sci Eng 8(2):253–264. doi: 10.1109/TASE.2010.2070838 Google Scholar
  73. Ženko B, Džeroski S (2008) Learning classification rules for multiple target attributes. In: PAKDD. Lecture notes in computer science, vol 5012. Springer, pp 454–465. doi: 10.1007/978-3-540-68125-0_40

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Panče Panov
    • 1
  • Larisa Soldatova
    • 2
  • Sašo Džeroski
    • 1
    • 3
    • 4
  1. 1.Department of Knowledge TechnologiesJožef Stefan InstituteLjubljanaSlovenia
  2. 2.Department of Computer ScienceBrunel UniversityUxbridge, London UK
  3. 3.Jožef Stefan International Postgraduate SchoolLjubljanaSlovenia
  4. 4.Centre of Excellence for Integrated Approaches in Chemistry and Biology of ProteinsLjubljanaSlovenia

Personalised recommendations