Advertisement

Data Mining and Knowledge Discovery

, Volume 28, Issue 4, pp 1004–1045 | Cite as

Behavior-based clustering and analysis of interestingness measures for association rule mining

  • C. Tew
  • C. Giraud-CarrierEmail author
  • K. Tanner
  • S. Burton
Article

Abstract

A number of studies, theoretical, empirical, or both, have been conducted to provide insight into the properties and behavior of interestingness measures for association rule mining. While each has value in its own right, most are either limited in scope or, more importantly, ignore the purpose for which interestingness measures are intended, namely the ultimate ranking of discovered association rules. This paper, therefore, focuses on an analysis of the rule-ranking behavior of 61 well-known interestingness measures tested on the rules generated from 110 different datasets. By clustering based on ranking behavior, we highlight, and formally prove, previously unreported equivalences among interestingness measures. We also show that there appear to be distinct clusters of interestingness measures, but that there remain differences among clusters, confirming that domain knowledge is essential to the selection of an appropriate interestingness measure for a particular task and business objective.

Keywords

Interestingness measures Clustering Behavior analysis Association rule mining 

References

  1. Abe H, Tsumoto S (2008) Analyzing behavior of objective rule evaluation indices based on a correlation coefficient. In: Proceedings of the 12th international conference on knowledge-based intelligent information and engineering systems (LNAI 5178), pp 758–765Google Scholar
  2. Aggarwal C, Yu P (1998) A new framework for itemset generation. In: Proceedings of the 7th ACM symposium on principles of database systems, pp 18–24Google Scholar
  3. Agrawal R, Srikant R (1994) Fast algorithms for mining association rules. In: Proceedings of the 20th international conference on very large data bases, pp 487–499Google Scholar
  4. Agrawal R, Imieliński T, Swami A (1993) Mining association rules between sets of items in large databases. ACM SIGMOD Rec 22(2):207–216CrossRefGoogle Scholar
  5. Ali K, Manganaris S, Srikant R (1997) Partial classification using association rules. In: Proceedings of the 3rd ACM SIGKDD international conference on knowledge discovery and data mining, pp 115–118Google Scholar
  6. Arunasalam B, Chawla S (2006) CCCS: a top-down associative classifier for imbalanced class distribution. In: Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining, pp 517–522Google Scholar
  7. Asuncion A, Newman D (2007) UCI machine learning repository. School of Information and Computer Sciences, University of California, Irvine. http://www.ics.uci.edu/mlearn/mlrepository.html
  8. Azé J, Kodratoff Y (2002) Evaluation de la résistance au bruit de quelques mesures d’extraction de règles d’association. In: Actes des 2èmes Journées Extraction et Gestion des Connaissances, pp 143–154Google Scholar
  9. Bertrand P, Bel Mufti G (2006) Loevinger’s measures of rule quality for assessing cluster stability. Comput Stat Data Anal 50(4):992–1015CrossRefGoogle Scholar
  10. Berzal F, Blanco I, Sánchez D, Vila MA (2002) Measuring the accuracy and interest of association rules: a new framework. Intell Data Anal 6(3):221–235zbMATHGoogle Scholar
  11. Blachman N (1968) The amount of information that y gives about x. IEEE Trans Inf Theory 14(1):27–31CrossRefzbMATHMathSciNetGoogle Scholar
  12. Blanchard J, Kuntz P, Guillet F, Gras R (2003) Implication intensity: from the basic statistical definition to the entropic version. In: Bozdogan H (ed) Statistical data mining and knowledge discovery. Chapman & Hall/CRC Press, Boca Raton, pp 475–493Google Scholar
  13. Blanchard J, Guillet F, Gras R, Briand H (2004) Mesurer la qualité des règles et de leurs contraposées avec le taux informationnel tic. In: Actes des 4èmes Journées Extraction et Gestion des Connaissances, pp 287–298Google Scholar
  14. Blanchard J, Guillet F, Briand H, Gras R (2005a) Assessing rule interestingness with a probabilistic measure of deviation from equilibrium. In: Proceedings of the 11th international symposium on applied stochastic models and data analysis, pp 191–200Google Scholar
  15. Blanchard J, Guillet F, Gras R, Briand H (2005b) Using information-theoretic measures to assess association rule interestingness. In: Proceedings of the 5th IEEE international conference on data mining, pp 66–73Google Scholar
  16. Breiman L, Friedman J, Olshen R, Stone C (1984) Classification and regression trees. Chapman & Hall/CRC Press, Boca RatonzbMATHGoogle Scholar
  17. Brin S, Motwani R, Silverstein C (1997a) Beyond market baskets: generalizing association rules to correlations. In: Proceedings of the ACM SIGMOD international conference on management of data, pp 265–276Google Scholar
  18. Brin S, Motwani R, Ullman J, Tsur S (1997b) Dynamic itemset counting and implication rules for market basket data. In: Proceedings of the ACM SIGMOD international conference on management of data, pp 255–264Google Scholar
  19. Clark P, Boswell R (1991) Rule induction with CN2: some recent improvements. In: Proceedings of the 5th European working session on, learning, pp 151–163Google Scholar
  20. Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20(1):37–46CrossRefGoogle Scholar
  21. Corey D, Dunlap W, Burke M (1998) Averaging correlations: expected values and bias in combined Pearson \(r\)s and Fisher’s \(z\) transformations. J Gen Psychol 125(3):245–261CrossRefGoogle Scholar
  22. De Bie T, Kontonasios KN, Spyropoulou E (2010) A framework for mining interesting pattern sets. SIGKDD Explor 12(2):92–100Google Scholar
  23. Duda R, Gaschnig J, Hart P (1981) Model design in the prospector consultant system for mineral exploration. In: Webber B, Nilsson N (eds) Readings in artificial intelligence. Tioga, Palo Alto, pp 334–348Google Scholar
  24. Fieller E, Hartley H, Pearson E (1957) Test for rank correlation coefficients. I. Biometrika 44(3/4):470–481Google Scholar
  25. Fürnkranz J, Flach P (2005) Roc n rule learning—towards a better understanding of covering algorithms. Mach Learn 58(1):39–77CrossRefzbMATHGoogle Scholar
  26. Gallo A, De Bie T, Cristianini N (2007) MINI: mining informative non-redundant itemsets. In: Proceedings of the 11th conference on principles and practice of knowledge discovery in databases, pp 438–445Google Scholar
  27. Ganascia J (1991) CHARADE: Apprentissage de bases de connaissances. In: Kodratoff Y, Diday E (eds) Induction Symbolique-Numérique à Partir de Données. Cépaduès-éditions, ToulouseGoogle Scholar
  28. Geng L, Hamilton H (2006) Interestingness measures for data mining: a survey. ACM Comput Surv 38(3):1–32CrossRefGoogle Scholar
  29. Goodman L, Kruskal W (1954) Measures of association for cross-classifications. J Am Stat Soc 49(268):732–764zbMATHGoogle Scholar
  30. Gras R, Larher A (1992) L’implication statistique, une nouvelle méthode d’analyse de données. Mathématiques et Sciences Humaines 120:5–31zbMATHMathSciNetGoogle Scholar
  31. Gray B, Orlowska M (1998) CCAIIA: clustering categorical attributes into interesting association rules. In: Proceedings of the 2nd Pacific Asia conference on knowledge discovery and data mining, pp 132–143Google Scholar
  32. Greenacre M, Primicerio R (2013) Multivariate data analysis for ecologists. Foundation BBVA, MadridGoogle Scholar
  33. Hahsler M, Hornik K (2007) New probabilistic interest measures for association rules. Intell Data Anal 11(5):437–455Google Scholar
  34. Hill T, Lewicki P (2007) Statistics: methods and applications. StatSoft, Tulsa. http://www.statsoft.com/textbook/
  35. Huynh XH, Guillet F, Briand H (2005) A data analysis approach for evaluating the behavior of interestingness measures. In: Proceedings of the 8th international conference on discovery science (LNAI 3735), pp 330–337Google Scholar
  36. Huynh XH, Guillet F, Briand H (2006) Discovering the stable clusters between interestingness measures. In: Proceedings of the 8th international conference on enterprise information systems: databases and information systems integration, pp 196–201Google Scholar
  37. Huynh XH, Guillet F, Blanchard J, Kuntz P, Briand H, Gras R (2007) A graph-based clustering approach to evaluate interestingness measures: a tool and a comparative study. In: Guillet F, Hamilton H (eds) Quality measures in data mining, vol 43. Studies in computational intelligence, Springer, Heidelberg, pp 25–50Google Scholar
  38. Jaccard P (1901) Etude comparative de la distribution florale dans une portion des alpes et des jura. Bulletin de la Société Vaudoise des Sciences Naturelles 37:547–579Google Scholar
  39. Jain A, Dubes R (1988) Algorithms for clustering data. Prentice-Hall, Inc., Englewood CliffszbMATHGoogle Scholar
  40. Jain A, Murty M, Flynn P (1999) Data clustering: a review. ACM Comput Surv 31(3):264–323CrossRefGoogle Scholar
  41. Jalali-Heravi M, Zaïane O (2010) A study on interestingness measures for associative classifiers. In: Proceedings of the 25th ACM symposium on applied computing, pp 1039–1046Google Scholar
  42. Jaroszewicz S, Simovici D (2004) Interestingness of frequent itemsets using Bayesian networks as background knowledge. In: Proceedings of the 10th ACM SIGKDD international conference on knowledge discovery and data mining, pp 178–186Google Scholar
  43. Johnson S (1967) Hierarchical clustering schemes. Psychometrika 2:241–254CrossRefGoogle Scholar
  44. Kamber M, Shinghal R (1996) Evaluating the interestingness of characteristic rules. In: Proceedings of the 2nd ACM SIGKDD international conference on knowledge discovery and data mining, pp 263–266Google Scholar
  45. Kannan S, Bhaskaran R (2009) Association rule pruning based on interestingness measures with clustering. Int J Comput Sci Issues 6(1):35–45Google Scholar
  46. Kiran U, Re K et al (2009) An improved multiple minimum support-based approach to mine rare association rules. In: Proceedings of the IEEE symposium on computational intelligence and data mining, pp 340–347Google Scholar
  47. Klösgen W (1996) Explora: a multipattern and multistrategy discovery assistant. In: Fayyad U, Piatetsky-Shapiro G, Smyth P, Uthurusamy R (eds) Advances in knowledge discovery and data mining. AAAI Press, Cambridge, pp 249–271Google Scholar
  48. Kodratoff Y (2001) Comparing machine learning and knowledge discovery in databases: an application to knowledge discovery in texts. In: Paliouras G, Karkaletsis V, Spyropoulos CD (eds) Machine learning and its applications. Springer, New York, pp 1–21CrossRefGoogle Scholar
  49. Koh Y, Pears R (2008) Rare association rule mining via transaction clustering. In: Proceedings of the 7th Australasian conference on knowledge discovery and data mining, pp 87–94Google Scholar
  50. Kulczynski S (1927) Die pflanzenassoziationen der pieninen. Bulletin International de l’Académie Polonaise des Sciences et des Lettres, Classe des Sciences Mathématiques et Naturelles B 2:57–203Google Scholar
  51. Lallich S, Teytaud O, Prudhomme E (2007) Association rule interestingness: measure and statistical validation. In: Guillet F, Hamilton H (eds) Quality measures in data mining, vol 43. Studies in computational intelligence. Springer, Heidelberg, pp 251–275Google Scholar
  52. Lan Y, Chen G, Janssens D, Wets G (2004) Dilated chi-square: a novel interestingness measure to build accurate and compact decision list. In: Proceedings of the international conference on intelligent information processing, pp 233–237Google Scholar
  53. Lan Y, Janssens D, Chen G, Wets G (2006) Improving associative classification by incorporating novel interestingness measures. Expert Syst Appl 31(1):184–192CrossRefGoogle Scholar
  54. Lavrac̆ N, Flach P, Zupan B (1999) Rule evaluation measures: a unifying view. In: Proceedings of the 9th international workshop on inductive logic programming (LNAI 1634), pp 174–185Google Scholar
  55. Lee J, Giraud-Carrier C (2011) A metric for unsupervised metalearning. Intell Data Anal 15(6):827–841Google Scholar
  56. Lenca P, Vaillant B, Meyer P, Lallich S (2007) Association rule interestingness measures: experimental and theoretical studies. ReCALL 43:51–76Google Scholar
  57. Lenca P, Meyer P, Vaillant B, Lallich S (2008) On selecting interestingness measures for association rules: user oriented description and multiple criteria decision aid. Eur J Oper Res 184(2):610–626CrossRefzbMATHGoogle Scholar
  58. Lerman I, Gras R, Rostam H (1981a) Elaboration et evaluation d’un indice d’ implication pour des données binaires 1. Mathématiques et Sciences Humaines 74:5–35zbMATHGoogle Scholar
  59. Lerman I, Gras R, Rostam H (1981b) Elaboration et evaluation d’un indice d’ implication pour des données binaires 2. Mathématiques et Sciences Humaines 75:5–47zbMATHGoogle Scholar
  60. Li J (2006) On optimal rule discovery. IEEE Trans Knowl Data Eng 18(4):460–471CrossRefGoogle Scholar
  61. Liu B, Hsu W, Ma Y (1999) Mining association rules with multiple minimum supports. In: Proceedings of the 5th ACM SIGKDD international conference on knowledge discovery and data mining, pp 337–341Google Scholar
  62. Loevinger J (1947) A systematic approach to the construction and evaluation of tests of ability. Psychol Monogr 61(4):1–49CrossRefGoogle Scholar
  63. Mampaey M, Tatti N, Vreeken J (2011) Tell me what I need to know: succinctly summarizing data with itemsets. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining, pp 573–581Google Scholar
  64. McGarry K (2005) A survey of interestingness measures for knowledge discovery. Knowl Eng Rev 20(1):39–61CrossRefGoogle Scholar
  65. Meilă M (2012) Logical equivalences of distances between clusterings—a geometric perspective. Mach Learn 86(3):369–389CrossRefzbMATHMathSciNetGoogle Scholar
  66. Mosteller F (1968) Association and estimation in contingency tables. J Am Stat Soc 63(321):1–28CrossRefMathSciNetGoogle Scholar
  67. Ohsaki M, Sato Y, Yokoi H, Yamaguchi T (2002) A rule discovery support system doe sequential medical data–in the case study of a chronic hepatitis dataset. In: Proceedings of the ICDM workshop on active mining, pp 97–102Google Scholar
  68. Ohsaki M, Kitaguchi S, Yokoi H, Yamaguchi T (2003) Investigation of rule interestingness in medical data mining. In: Proceedings of the 2nd international workshop on active mining (LNAI 3430), pp 174–189Google Scholar
  69. Ohsaki M, Kitaguchi S, Okamoto K, Yokoi H, Yamaguchi T (2004) Evaluation of rule interestingness measures with a clinical dataset on hepatitis. In: Proceedings of the 8th European conference on principles and practice of knowledge discovery in databases (LNAI 3203), pp 362–373Google Scholar
  70. Padmanabhan B (2004) The interestingness paradox in pattern discovery. J Appl Stat 31(8):1019–1035CrossRefzbMATHMathSciNetGoogle Scholar
  71. Peterson A, Martinez T (2005) Estimating the potential for combining learning models. In: Proceedings of the ICML workshop on meta-learning, pp 68–75Google Scholar
  72. Piatetsky-Shapiro G (1991) Discovery, analysis, and presentation of strong rules. In: Piatetsky-Shapiro G, Frawley WJ (eds) Knowledge discovery in databases. AAAI Press, Cambridge, pp 229–248Google Scholar
  73. Plasse M, Niang N, Saportaa G, Villeminot A, Leblond L (2007) Combined use of association rules mining and clustering methods to find relevant links between binary rare attributes in a large data set. Comput Stat Data Anal 52(1):596–613CrossRefzbMATHGoogle Scholar
  74. R Development Core Team (2007) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  75. Ritschard G, Zighed D (2006) Implication strength of classification rules. In: Proceedings of the 16th international symposium on methodologies for intelligent systems (LNCS 4203), pp 463–472Google Scholar
  76. Sahar S (1999) Interestingness via what is not interesting. In: Proceedings of the 5th ACM SIGKDD international conference on knowledge discovery and data mining, pp 332–336Google Scholar
  77. Sahar S (2002) Exploring interestingness through clustering: a framework. In: Proceedings of the 2nd IEEE international conference on data mining, pp 677–680Google Scholar
  78. Sahar S (2003) What is interesting: studies on interestingness in knowledge discovery. PhD thesis, School of Computer Science, Tel-Aviv UniversityGoogle Scholar
  79. Sahar S (2010) Interestingness measures—on determining what is interesting. In: Maimon O, Rokach L (eds) Data mining and knowledge discovery handbook, 2nd edn. Springer, New York, pp 603–612Google Scholar
  80. Sebag M, Schoenauer M (1988) Generation of rules with certainty and confidence factors from incomplete and incoherent learning bases. In: Proceedings of the European knowledge acquisition, workshop, pp 28.1-28.20Google Scholar
  81. Silver N, Dunlap W (1987) Averaging correlation coefficients: should Fisher’s \(z\) transformation be used? J Appl Psychol 72(1):146–148CrossRefGoogle Scholar
  82. Smyth P, Goodman R (1992) An information theoretic approach to rule induction from databases. IEEE Trans Knowl Data Eng 4(4):301–316CrossRefGoogle Scholar
  83. Spyropoulou E, De Bie T (2011) Interesting multi-relational patterns. In: Proceedings of the 11th international conference on data mining, pp 675–684Google Scholar
  84. Stiglic G, Kokol P (2009) GEMLeR: gene expression machine learning repository. Faculty of Health Sciences, University of Maribor. http://gemler.fzv.uni-mb.si/
  85. Tan P, Kumar V (2000) Interestingness measures for association patterns: a perspective. In: Proceedings of the KDD’00 workshop on postprocessing in machine learning and data miningGoogle Scholar
  86. Tan P, Kumar V, Srivastava J (2002) Selecting the right interestingness measure for association patterns. In: Proceedings of the 8th ACM SIGKDD international conference on knowledge discovery and data mining, pp 32–41Google Scholar
  87. Tan P, Kumar V, Srivastava J (2004) Selecting the right objective measure for association analysis. Inf Syst 29(4):293–313CrossRefGoogle Scholar
  88. Tatti N, Mampaey M (2010) Using background knowledge to rank itemsets. Data Min Knowl Discov 21(2):293–309CrossRefMathSciNetGoogle Scholar
  89. Vaillant B, Lenca P, Lallich S (2004) A clustering of interestingness measures. In: Proceedings of the 7th international conference on discovery science (LNAI 3245), pp 290–297Google Scholar
  90. Verhein F, Chawla S (2007) Using significant, positively associated and relatively class correlated rules for associative classification of imbalanced datasets. In: Proceedings of the 7th IEEE international conference on data mining, pp 679–684Google Scholar
  91. Webb G (2006) Discovery significant rule. In: Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining, pp 434–443Google Scholar
  92. Webb G (2010) Self-sufficient itemsets: an approach to screening potentially interesting associations between items. ACM Trans Knowl Discov Data 4(1):3:1–3:20Google Scholar
  93. Webb G (2011) Filtered-top-k association discovery. Wiley Interdiscip Rev Data Min Knowl Discov 1(3):183–192CrossRefGoogle Scholar
  94. Winitzki S (2003) Uniform approximation for transcendental functions. In: Proceedings of the international conference on computational science and its applications, part I (LNCS 2667), pp 780–789Google Scholar
  95. Winitzki S (2008) A handy approximation for the error function and its inverse. http://www.scribd.com/doc/82414963/Winitzki-Approximation-to-Error-Function. Accessed 20 June 2012
  96. Witten I, Eibe F (2000) Data mining: practical machine learning tools with Java implementations. Morgan Kaufmann, San FranciscoGoogle Scholar
  97. Wu T, Chen Y, Han J (2010) Re-examination of interestingness measures in pattern mining: a unified framework. Data Min Knowl Discov 21(3):371–397CrossRefMathSciNetGoogle Scholar
  98. Yao J, Liu H (1997) Searching multiple databases for interesting complexes. In: Proceedings of the 1st Pacific-Asia conference on knowledge discovery and data miningGoogle Scholar
  99. Yao Y, Zhong N (1999) An analysis of quantitative measures associated with rules. In: Proceedings of the 3rd Pacific-Asia conference on knowledge discovery and data mining (LNCS 1574), pp 479–488Google Scholar
  100. Yule G (1900) On the association of attributes in statistics: with illustrations from the material of the childhood society, &c. Philos Trans R Soc A 194:257–319CrossRefzbMATHGoogle Scholar
  101. Yule G (1912) On the methods of measuring association between two attributes. J R Stat Soc 75(6):579–652CrossRefGoogle Scholar
  102. Zhang T (2000) Association rules. In: Proceedings of the 4th Pacific-Asia conference on knowledge discovery and data mining (LNAI 1805), pp 245–256Google Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  • C. Tew
    • 1
  • C. Giraud-Carrier
    • 1
    Email author
  • K. Tanner
    • 1
  • S. Burton
    • 1
  1. 1.Department of Computer ScienceBrigham Young UniversityProvoUSA

Personalised recommendations