Skip to main content
Log in

A framework for semi-supervised and unsupervised optimal extraction of clusters from hierarchies

  • Published:
Data Mining and Knowledge Discovery Aims and scope Submit manuscript

Abstract

We introduce a framework for the optimal extraction of flat clusterings from local cuts through cluster hierarchies. The extraction of a flat clustering from a cluster tree is formulated as an optimization problem and a linear complexity algorithm is presented that provides the globally optimal solution to this problem in semi-supervised as well as in unsupervised scenarios. A collection of experiments is presented involving clustering hierarchies of different natures, a variety of real data sets, and comparisons with specialized methods from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. These methods should be distinguished from those that use hierarchical clustering and partially labeled data to categorize unlabeled data into predefined categories (semi-supervised categorization; e.g., see Skarmeta et al. 2000; Benkhalifa et al. 2001).

  2. Note that such a reduction may be even more noticeable for higher values of \(m_{ clSize }\).

  3. In the example of Fig. 3b–d, these nodes would be virtual children of \(\mathbf{C}_1\) and \(\mathbf{C}_2\), which have been omitted for the sake of clarity.

  4. An alternative setting, in which both objectives in Eqs. (1) and (3) are combined into a single, mixed one, will be discussed further, in Sect. 3.2.

  5. Notice that \(\varGamma \) has the same properties as \(S\) discussed in Sect. 2.3: it can be computed locally for each node and it is additive w.r.t. the objects in the node, so it is compatible with the aggregation operator (sum) used in the objective function in Eqs. (1) and (5).

References

  • Ahmed EB, Nabli A, Gargouri F (2012) Shacun: semi-supervised hierarchical active clustering based on ranking constraints. In: Proceedings of the 12th industrial conference on data mining. Springer, Berlin, pp 194–208

  • Ankerst M, Breunig MM, Kriegel HP, Sander J (1999) Optics: ordering points to identify the clustering structure. SIGMOD Rec 28:49–60

    Article  Google Scholar 

  • Bade K, Nürnberger A (2006) Personalized hierarchical clustering. In: IEEE/WIC/ACM international conference on web intelligence (WI)

  • Bade K, Nürnberger A (2008) Creating a cluster hierarchy under constraints of a partially known hierarchy. In: SIAM international conference on data mining (SDM), Atlanta

  • Bade K, Hermkes M, Nürnberger A (2007) User oriented hierarchical information organization and retrieval. In: European conference on machine Learning (ECML), Corvallis, pp 518–526

  • Basu S, Davidson I, Wagstaff K (eds) (2008) Constrained clustering: advances in algorithms applications and theory. CRC Press, Boca Raton

  • Benkhalifa M, Mouradi A, Bouyakhf H (2001) Integrating wordnet knowledge to supplement training data in semi-supervised agglomerative hierarchical clustering for text categorization. Int J Intell Syst 16:929–947

    Article  MATH  Google Scholar 

  • Blockeel H, De Raedt L, Ramon J (1998) Top-down induction of clustering trees. In: International conference on machine learning (ICML), pp 55–63

  • Böhm C, Plant C (2008) Hissclu: a hierarchical density-based method for semi-supervised clustering. In: International conference on extending database technology (EDBT)

  • Boudaillier E, Hébrail G (1997) Interactive interpretation of hierarchical clustering. In: Principles of data mining and knowledge discovery, LNCS, vol 1263, Springer, Heidelberg, pp 288–298

  • Boudaillier E, Hébrail G (1998) Interactive interpretation of hierarchical clustering. Intell Data Anal 2:229–244

    Article  Google Scholar 

  • Brecheisen S, Kriegel HP, Kröger P, Pfeifle M (2004) Visually mining through cluster hierarchies. In: SIAM international conference on data mining (SDM)

  • Davidson I, Ravi S (2005) Agglomerative hierarchical clustering with constraints: theoretical and empirical results. In: European conference on principles and practice of knowledge discovery in databases (PKDD)

  • Davidson I, Ravi S (2009) Using instance-level constraints in agglomerative hierarchical clustering: theoretical and empirical results. Data Min Knowl Disc 18:257–282

    Article  MathSciNet  Google Scholar 

  • Davidson I, Wagstaff KL, Basu S (2006) Measuring constraint-set utility for partitional clustering algorithms. In: European conference on principles and practice of knowledge in databases (PKDD)

  • Ester M, Kriegel HP, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: International conference on knowledge discovery and data mining (KDD)

  • Everitt BS, Landau S, Leese M (2001) Cluster analysis, 4th edn. Arnold, London

  • Ferraretti D, Gamberoni G, Lamma E (2009) Automatic cluster selection using index driven search strategy. In: International conference of the Italian association for artificial intelligence (AI*IA)

  • Frank A, Asuncion A (2010) UCI machine learning repository. http://archive.ics.uci.edu/ml. Accessed 1 Dec 2011

  • Geusebroek JM, Burghouts G, Smeulders A (2005) The Amsterdam library of object images. Int J Comput Vis 61:103–112

    Google Scholar 

  • Gilpin S, Davidson I (2011) Incorporating SAT solvers into hierarchical clustering algorithms: an efficient and flexible approach. In: ACM SIGKDD international conference on knowledge discovery and data mining (KDD)

  • Gupta G, Liu A, Ghosh J (2006) Hierarchical density shaving: a clustering and visualization framework for large biological datasets. In: IEEE ICDM workshop on data mining in bioinformatics (DMB)

  • Gupta G, Liu A, Ghosh J (2010) Automated hierarchical density shaving: a robust automated clustering and visualization framework for large biological data sets. IEEE/ACM Trans Comput Biol Bioinformatics 7(2):223–237

    Article  Google Scholar 

  • Hamasuna Y, Endo Y, Miyamoto S (2012) On agglomerative hierarchical clustering using clusterwise tolerance based pairwise constraints. J Adv Comput Intell Intell Inform 16(1):174–179

    Google Scholar 

  • Hartigan JA (1975) Clustering algorithms. Wiley, New York

    MATH  Google Scholar 

  • Herbin M, Bonnet N, Vautrot P (2001) Estimation of the number of clusters and influence zones. Pattern Recognit Lett 22(14):1557–1568

    Article  MATH  Google Scholar 

  • Hinneburg A, Keim DA (1998) An efficient approach to clustering in large multimedia databases with noise. In: International conference on knowledge discovery and data mining (KDD)

  • Horta D, Campello RJGB (2012) Automatic aspect discrimination in data clustering. Pattern Recognit 45:4370–4388

    Article  MATH  Google Scholar 

  • Hubert L, Arabie P (1985) Comparing partitions. J Classif 2(1):193–218

    Article  Google Scholar 

  • Jain AK, Dubes RC (1988) Algorithms for clustering data. Englewood Cliffs, Prentice Hall

  • Kestler H, Kraus J, Palm G, Schwenker F (2006) On the effects of constraints in semi-supervised hierarchical clustering. In: IAPR workshop on artificial neural networks in pattern recognition (ANNPR)

  • Kettenring JR (2006) The practice of cluster analysis. J Classif 23:3–30

    Article  MathSciNet  Google Scholar 

  • Kim HJ, Lee SG (2002) An effective document clustering method using user-adaptable distance metrics. In: ACM symposium on applied computing (SAC)

  • Klein D, Kamvar SD, Manning CD (2002) From instance-level constraints to space-level constraints: making the most of prior knowledge in data clustering. In: International conference on machine learning (ICML)

  • Kraus JM, Palm G, Kestler HA (2007) On the robustness of semi-supervised hierarchical graph clustering in functional genomics. In: 5th International workshop on mining and learning with graphs (MLG), pp 1–4

  • Kriegel HP, Kröger P, Sander J, Zimek A (2011) Density-based clustering. Wiley Interdiscip Rev Data Min Knowl Discov 1(3):231–240

    Article  Google Scholar 

  • Larsen B, Aone C (1999) Fast and effective text mining using linear-time document clustering. In: International conference on knowledge discovery and data mining (KDD)

  • Lelis L, Sander J (2009) Semi-supervised density-based clustering. In: International conference on data mining (ICDM)

  • Milligan GW, Cooper MC (1985) An examination of procedures for determining the number of clusters in a data set. Psychometrika 50(2):159–179

    Article  Google Scholar 

  • Miyamoto S, Terami A (2010) Semi-supervised agglomerative hierarchical clustering algorithms with pairwise constraints. In: IEEE international conference on fuzzy systems (FUZZ-IEEE), pp 1–6

  • Naldi M, Campello R, Hruschka E, Carvalho A (2011) Efficiency issues of evolutionary k-means. Appl Soft Comput 11(2):1938–1952

    Article  Google Scholar 

  • Paulovich F, Nonato L, Minghim R, Levkowitz H (2008) Least square projection: a fast high-precision multidimensional projection technique and its application to document mapping. IEEE Trans Vis Comput Graph 14(3):564–575

    Article  Google Scholar 

  • Sander J, Qin X, Lu Z, Niu N, Kovarsky A (2003) Automatic extraction of clusters from hierarchical clustering representations. In: Pacific-Asia conference on knowledge discovery and data mining (PAKDD)

  • Skarmeta AG, Bensaid A, Tazi N (2000) Data mining for text categorization with semi-supervised agglomerative hierarchical clustering. Int J Intell Syst 15(7):633–646

    Article  MATH  Google Scholar 

  • Struyf J, Džeroski S (2007) Clustering trees with instance level constraints. In: European conference on machine learning (ECML), pp 359–370

  • Stuetzle W (2003) Estimating the cluster tree of a density by analyzing the minimal spanning tree of a sample. J Classif 20:25–47

    Article  MathSciNet  MATH  Google Scholar 

  • Stuetzle W, Nugent R (2010) A generalized single linkage method for estimating the cluster tree of a density. J Comput Graph Stat 19(2):397–418

    Article  MathSciNet  Google Scholar 

  • Sun H, Huang J, Han J, Deng H, Zhao P, Feng B (2010) gSkeletonClu: density-based network clustering via structure-connected tree division or agglomeration. In: IEEE international conference on data mining (ICDM)

  • Tan PN, Steinbach M, Kumar V (2006) Introduction to data mining. Addison-Wesley, Boston

  • Wagstaff KL (2002) Intelligent clustering with instance-level constraints. Ph.D. thesis, Department of Computer Science, Cornell University

  • Xiong T, Wang S, Mayers A, Monga E (2011) Semi-supervised parameter-free divisive hierarchical clustering of categorical data. In: Pacific-Asia conference on knowledge discovery and data mining (PAKDD), pp 265–276

  • Yeung KY, Fraley C, Murua A, Raftery AE, Ruzzo WL (2001) Model-based clustering and data transformations for gene expression data. Bioinformatics 17(10):977–987

    Article  Google Scholar 

  • Yeung KY, Medvedovic M, Bumgarner R (2003) Clustering gene-expression data with repeated measurements. Genome Biol 4(5):R34

    Google Scholar 

  • Zhao H, Qi Z (2010) Hierarchical agglomerative clustering with ordering constraints. In: International conference on knowledge discovery and data mining (WKDD)

  • Zhao Y, Karypis G (2005) Hierarchical clustering algorithms for document datasets. Data Min Knowl Discov 10:141–168

    Article  MathSciNet  Google Scholar 

  • Zheng L, Li T (2011) Semi-supervised hierarchical clustering. In: IEEE international conference on data mining (ICDM)

Download references

Acknowledgments

This study was supported by Fapesp / CNPq (Brazil) and NSERC (Canada).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. G. B. Campello.

Additional information

Responsible editor: Hendrik Blockeel, Kristian Kersting, Siegfried Nijssen, Filip Zelezny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campello, R.J.G.B., Moulavi, D., Zimek, A. et al. A framework for semi-supervised and unsupervised optimal extraction of clusters from hierarchies. Data Min Knowl Disc 27, 344–371 (2013). https://doi.org/10.1007/s10618-013-0311-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10618-013-0311-4

Keywords

Navigation