Data Mining and Knowledge Discovery

, Volume 21, Issue 1, pp 1–8

Guest Editorial: Global modeling using local patterns

Open Access


  1. Azevedo PJ, Jorge AM (2010) Ensembles of jittered association rule classifiers. Data Min Knowl Disc. doi:10.1007/s10618-010-0173-y
  2. Blei DM, Ng AY, Jordan MI (2003) Latent dirichlet allocation. J Mach Learn Res 3: 993–1022MATHCrossRefGoogle Scholar
  3. Bringmann B, Zimmermann A, De Raedt L, Nijssen S (2006) Don’t be afraid of simpler patterns. In: Fürnkranz J, Scheffer T, Spiliopoulou M (eds) Proceedings of the 10th European conference on principles and practice of knowledge discovery in databases (PKDD-06). Springer-Verlag, Berlin, pp 55–66Google Scholar
  4. Cohen WW, Singer Y (1999) A simple, fast, and effective rule learner. In: Proceedings of the 16th national conference on artificial intelligence (AAAI-99). AAAI/MIT Press, Menlo Park, CA, pp 335–342Google Scholar
  5. De Raedt L, Zimmermann A (2007) Constraint-based pattern set mining. In: Proceedings of the 7th SIAM international conference on data mining (SDM-07), Bethesda, MDGoogle Scholar
  6. Dembczynski K, Kotłowski W, Słowinski R (2010) ENDER—a statistical framework for boosting decision rules. Data Min Knowl Disc. doi:10.1007/s10618-010-0177-7
  7. Fayyad UM, Piatetsky-Shapiro G, Smyth P (1996) From data mining to knowledge discovery in databases. AI Mag 17(3): 37–54Google Scholar
  8. Forman G (2003) An extensive empirical study for feature selection in text classification. J Mach Learn Res 3: 1289–1305MATHCrossRefGoogle Scholar
  9. Friedman JH, Popescu BE (2008) Predictive learning via rule ensembles. Ann Appl Stat 2: 916–954MATHCrossRefGoogle Scholar
  10. Giacometti A, Khanjari ME, Marcel P, Soulet A (2009) A framework for pattern-based global models. In: Proceedings of the 10th international conference on intelligent data engineering and automated learning. Burgos, SpainGoogle Scholar
  11. Goethals B (2005) Frequent set mining. In: Maimon O, Rokach L (eds) The data mining and knowledge discovery handbook. Springer-Verlag, Berlin, pp 377–397CrossRefGoogle Scholar
  12. Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3: 1157–1182MATHCrossRefGoogle Scholar
  13. Hand DJ (2002) Pattern detection and discovery. In: Hand DJ, Adams NM, Bolton RJ (eds) Proceedings of the ESF exploratory workshop on pattern detection and discovery in data Mining. Springer, pp 1–12Google Scholar
  14. Hofmann T (1999) Probabilistic latent semantic analysis. In: Proceedings of the 15th conference on uncertainty in artificial intelligence (UAI-99). Stockholm, Sweden, pp 289–296Google Scholar
  15. Jaroszewicz S (2010) Using interesting sequences to interactively build Hidden Markov Models. Data Min Knowl Disc. doi:10.1007/s10618-010-0171-0
  16. Knobbe AJ (2006) Safarii multi-relational data mining environment.
  17. Knobbe AJ, Crémilleux B, Fürnkranz J, Scholz M (2008) From local patterns to global models: the LeGo approach to data mining. In: Fürnkranz J, Knobbe A (eds) From local patterns to global models. Proceedings of the ECML PKDD 2008 Workshop. Antwerp, Belgium, pp 1–16.
  18. Knobbe AJ, Ho EKY (2006) Maximally informative k-itemsets and their efficient discovery. In: Eliassi-Rad T, Ungar LH, Craven M, Gunopulos D (eds) Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining (KDD-06). PA, Philadelphia, pp 237–244CrossRefGoogle Scholar
  19. Knobbe AJ, Ho EKY (2006) Pattern teams. In: Fürnkranz J, Scheffer T, Spiliopoulou M (eds) Proceedings of the 10th European conference on principles and practice of knowledge discovery in databases (PKDD-06). Springer-Verlag, Berlin, pp 577–584Google Scholar
  20. Kralj Novak P, Lavrač N, Webb GI (2009) Supervised descriptive rule discovery: a unifying survey of contrast set emerging pattern and subgroup mining. J Mach Learn Res 10: 377–403Google Scholar
  21. Kramer S, Lavrač N, Flach P (2001) Propositionalization approaches to relational data mining. In: Džeroski S, Lavrač N (eds) Relational data mining. Springer-Verlag, Berlin, pp 262–291Google Scholar
  22. Liu B, Hsu W, Ma Y (1998) Integrating classification and association rule mining. In: Agrawal R, Stolorz P, Piatetsky-Shapiro G (eds) Proceedings of the 4th international conference on knowledge discovery and data mining (KDD-98), pp 80–86Google Scholar
  23. Malik HH, Kender JR, Fradkin D, Moerchen F (2010) Hierarchical document clustering using local patterns. Data Min Knowl Disc. doi:10.1007/s10618-010-0172-z
  24. Morik, K, Boulicaut, J-F, Siebes, A (eds) (2005) Local pattern detection. Springer-Verlag, BerlinGoogle Scholar
  25. Nijssen S, Fromont E (2010) Optimal constraint-based decision tree induction from itemset lattices. Data Min Knowl Disc. doi:10.1007/s10618-010-0174-x
  26. Weiss SM, Indurkhya N (2000) Lightweight rule induction. In: Langley P (eds) Proceedings of the 17th international conference on machine learning (ICML-2000). Stanford, CA, pp 1135–1142Google Scholar
  27. Wiswedel B, Höppner F, Berthold MR (2010) Learning in parallel universes. Data Min Knowl Disc. doi:10.1007/s10618-010-0170-1
  28. Zimmermann A, DeRaedt L (2004) Corclass: correlated association rule mining for classification. In: Suzuki E, Arikawa S (eds) Proceedings of the 7th international conference on discovery science (DS’04). Springer-Verlag, Berlin, pp 60–72Google Scholar
  29. Zimmermann A, DeRaedt L (2009) Cluster-grouping: from subgroup discovery to clustering. Mach Learn 77(1): 125–159CrossRefGoogle Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  1. 1.TU DarmstadtDarmstadtGermany
  2. 2.LIACSLeiden UniversityLeidenThe Netherlands

Personalised recommendations