Data Mining and Knowledge Discovery

, Volume 21, Issue 1, pp 1–8 | Cite as

Guest Editorial: Global modeling using local patterns

Open Access
Article

Notes

Acknowledgements

We would like to thank all authors who submitted their work to this special issue (in particular to those whose fine works did eventually not make the cut) and our reviewers, whose careful comments on the submitted papers contributed to this final selection of papers. Special thanks go to Bruno Crémilleux and Martin Scholz for their contributions to the LeGo framework. This work has been supported by the German Science Foundation (DFG).

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. Azevedo PJ, Jorge AM (2010) Ensembles of jittered association rule classifiers. Data Min Knowl Disc. doi: 10.1007/s10618-010-0173-y
  2. Blei DM, Ng AY, Jordan MI (2003) Latent dirichlet allocation. J Mach Learn Res 3: 993–1022MATHCrossRefGoogle Scholar
  3. Bringmann B, Zimmermann A, De Raedt L, Nijssen S (2006) Don’t be afraid of simpler patterns. In: Fürnkranz J, Scheffer T, Spiliopoulou M (eds) Proceedings of the 10th European conference on principles and practice of knowledge discovery in databases (PKDD-06). Springer-Verlag, Berlin, pp 55–66Google Scholar
  4. Cohen WW, Singer Y (1999) A simple, fast, and effective rule learner. In: Proceedings of the 16th national conference on artificial intelligence (AAAI-99). AAAI/MIT Press, Menlo Park, CA, pp 335–342Google Scholar
  5. De Raedt L, Zimmermann A (2007) Constraint-based pattern set mining. In: Proceedings of the 7th SIAM international conference on data mining (SDM-07), Bethesda, MDGoogle Scholar
  6. Dembczynski K, Kotłowski W, Słowinski R (2010) ENDER—a statistical framework for boosting decision rules. Data Min Knowl Disc. doi: 10.1007/s10618-010-0177-7
  7. Fayyad UM, Piatetsky-Shapiro G, Smyth P (1996) From data mining to knowledge discovery in databases. AI Mag 17(3): 37–54Google Scholar
  8. Forman G (2003) An extensive empirical study for feature selection in text classification. J Mach Learn Res 3: 1289–1305MATHCrossRefGoogle Scholar
  9. Friedman JH, Popescu BE (2008) Predictive learning via rule ensembles. Ann Appl Stat 2: 916–954MATHCrossRefGoogle Scholar
  10. Giacometti A, Khanjari ME, Marcel P, Soulet A (2009) A framework for pattern-based global models. In: Proceedings of the 10th international conference on intelligent data engineering and automated learning. Burgos, SpainGoogle Scholar
  11. Goethals B (2005) Frequent set mining. In: Maimon O, Rokach L (eds) The data mining and knowledge discovery handbook. Springer-Verlag, Berlin, pp 377–397CrossRefGoogle Scholar
  12. Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3: 1157–1182MATHCrossRefGoogle Scholar
  13. Hand DJ (2002) Pattern detection and discovery. In: Hand DJ, Adams NM, Bolton RJ (eds) Proceedings of the ESF exploratory workshop on pattern detection and discovery in data Mining. Springer, pp 1–12Google Scholar
  14. Hofmann T (1999) Probabilistic latent semantic analysis. In: Proceedings of the 15th conference on uncertainty in artificial intelligence (UAI-99). Stockholm, Sweden, pp 289–296Google Scholar
  15. Jaroszewicz S (2010) Using interesting sequences to interactively build Hidden Markov Models. Data Min Knowl Disc. doi: 10.1007/s10618-010-0171-0
  16. Knobbe AJ (2006) Safarii multi-relational data mining environment. http://www.kiminkii.com/safarii.html
  17. Knobbe AJ, Crémilleux B, Fürnkranz J, Scholz M (2008) From local patterns to global models: the LeGo approach to data mining. In: Fürnkranz J, Knobbe A (eds) From local patterns to global models. Proceedings of the ECML PKDD 2008 Workshop. Antwerp, Belgium, pp 1–16. http://www.ke.informatik.tu-darmstadt.de/events/LeGo-09/
  18. Knobbe AJ, Ho EKY (2006) Maximally informative k-itemsets and their efficient discovery. In: Eliassi-Rad T, Ungar LH, Craven M, Gunopulos D (eds) Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining (KDD-06). PA, Philadelphia, pp 237–244CrossRefGoogle Scholar
  19. Knobbe AJ, Ho EKY (2006) Pattern teams. In: Fürnkranz J, Scheffer T, Spiliopoulou M (eds) Proceedings of the 10th European conference on principles and practice of knowledge discovery in databases (PKDD-06). Springer-Verlag, Berlin, pp 577–584Google Scholar
  20. Kralj Novak P, Lavrač N, Webb GI (2009) Supervised descriptive rule discovery: a unifying survey of contrast set emerging pattern and subgroup mining. J Mach Learn Res 10: 377–403Google Scholar
  21. Kramer S, Lavrač N, Flach P (2001) Propositionalization approaches to relational data mining. In: Džeroski S, Lavrač N (eds) Relational data mining. Springer-Verlag, Berlin, pp 262–291Google Scholar
  22. Liu B, Hsu W, Ma Y (1998) Integrating classification and association rule mining. In: Agrawal R, Stolorz P, Piatetsky-Shapiro G (eds) Proceedings of the 4th international conference on knowledge discovery and data mining (KDD-98), pp 80–86Google Scholar
  23. Malik HH, Kender JR, Fradkin D, Moerchen F (2010) Hierarchical document clustering using local patterns. Data Min Knowl Disc. doi: 10.1007/s10618-010-0172-z
  24. Morik, K, Boulicaut, J-F, Siebes, A (eds) (2005) Local pattern detection. Springer-Verlag, BerlinGoogle Scholar
  25. Nijssen S, Fromont E (2010) Optimal constraint-based decision tree induction from itemset lattices. Data Min Knowl Disc. doi: 10.1007/s10618-010-0174-x
  26. Weiss SM, Indurkhya N (2000) Lightweight rule induction. In: Langley P (eds) Proceedings of the 17th international conference on machine learning (ICML-2000). Stanford, CA, pp 1135–1142Google Scholar
  27. Wiswedel B, Höppner F, Berthold MR (2010) Learning in parallel universes. Data Min Knowl Disc. doi: 10.1007/s10618-010-0170-1
  28. Zimmermann A, DeRaedt L (2004) Corclass: correlated association rule mining for classification. In: Suzuki E, Arikawa S (eds) Proceedings of the 7th international conference on discovery science (DS’04). Springer-Verlag, Berlin, pp 60–72Google Scholar
  29. Zimmermann A, DeRaedt L (2009) Cluster-grouping: from subgroup discovery to clustering. Mach Learn 77(1): 125–159CrossRefGoogle Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  1. 1.TU DarmstadtDarmstadtGermany
  2. 2.LIACSLeiden UniversityLeidenThe Netherlands

Personalised recommendations