Data Mining and Knowledge Discovery

, Volume 14, Issue 1, pp 63–97

Locally adaptive metrics for clustering high dimensional data

  • Carlotta Domeniconi
  • Dimitrios Gunopulos
  • Sheng Ma
  • Bojun Yan
  • Muna Al-Razgan
  • Dimitris Papadopoulos
Article

DOI: 10.1007/s10618-006-0060-8

Cite this article as:
Domeniconi, C., Gunopulos, D., Ma, S. et al. Data Min Knowl Disc (2007) 14: 63. doi:10.1007/s10618-006-0060-8

Abstract

Clustering suffers from the curse of dimensionality, and similarity functions that use all input features with equal relevance may not be effective. We introduce an algorithm that discovers clusters in subspaces spanned by different combinations of dimensions via local weightings of features. This approach avoids the risk of loss of information encountered in global dimensionality reduction techniques, and does not assume any data distribution model. Our method associates to each cluster a weight vector, whose values capture the relevance of features within the corresponding cluster. We experimentally demonstrate the gain in perfomance our method achieves with respect to competitive methods, using both synthetic and real datasets. In particular, our results show the feasibility of the proposed technique to perform simultaneous clustering of genes and conditions in gene expression data, and clustering of very high-dimensional data such as text data.

Keywords

Subspace clustering Dimensionality reduction Local feature relevance Clustering ensembles Gene expression data Text data 

Copyright information

© Springer Science+Business Media, LLC (omit copyright symbol) 2007

Authors and Affiliations

  • Carlotta Domeniconi
    • 1
  • Dimitrios Gunopulos
    • 2
  • Sheng Ma
    • 3
  • Bojun Yan
    • 1
  • Muna Al-Razgan
    • 1
  • Dimitris Papadopoulos
    • 2
  1. 1.George Mason UniversityFairfaxUSA
  2. 2.UC RiversideRiversideUSA
  3. 3.Vivido Media Inc.BeijingChina

Personalised recommendations