Data Mining and Knowledge Discovery

, Volume 15, Issue 1, pp 55–86 | Cite as

Frequent pattern mining: current status and future directions

Open Access
Article

Abstract

Frequent pattern mining has been a focused theme in data mining research for over a decade. Abundant literature has been dedicated to this research and tremendous progress has been made, ranging from efficient and scalable algorithms for frequent itemset mining in transaction databases to numerous research frontiers, such as sequential pattern mining, structured pattern mining, correlation mining, associative classification, and frequent pattern-based clustering, as well as their broad applications. In this article, we provide a brief overview of the current status of frequent pattern mining and discuss a few promising research directions. We believe that frequent pattern mining research has substantially broadened the scope of data analysis and will have deep impact on data mining methodologies and applications in the long run. However, there are still some challenging research issues that need to be solved before frequent pattern mining can claim a cornerstone approach in data mining applications.

Keywords

Frequent pattern mining Association rules Data mining research Applications 

References

  1. Afrati FN, Gionis A, Mannila H (2004) Approximating a collection of frequent sets. In: Proceedings of the 2004 ACM SIGKDD international conference knowledge discovery in databases (KDD’04), Seattle, WA, pp 12–19Google Scholar
  2. Agarwal R, Aggarwal CC, Prasad VVV (2001) A tree projection algorithm for generation of frequent itemsets. J Parallel Distribut Comput 61:350–371Google Scholar
  3. Aggarwal CC, Yu PS (1998) A new framework for itemset generation. In: Proceedings of the 1998 ACM symposium on principles of database systems (PODS’98), Seattle, WA, pp 18–24Google Scholar
  4. Agrawal R, Gehrke J, Gunopulos D, Raghavan P (1998) Automatic subspace clustering of high dimensional data for data mining applications. In: Proceedings of the 1998 ACM-SIGMOD international conference on management of data (SIGMOD’98), Seattle, WA, pp 94–105Google Scholar
  5. Agrawal R, Imielinski T, Swami A (1993) Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM-SIGMOD international conference on management of data (SIGMOD’93), Washington, DC, pp 207–216Google Scholar
  6. Agrawal R, Shafer JC (1996) Parallel mining of association rules: design, implementation, and experience. IEEE Trans Knowl Data Eng 8:962–969CrossRefGoogle Scholar
  7. Agrawal R, Srikant R (1994) Fast algorithms for mining association rules. In: Proceedings of the 1994 international conference on very large data bases (VLDB’94), Santiago, Chile, pp 487–499Google Scholar
  8. Agrawal R, Srikant R (1995) Mining sequential patterns. In: Proceedings of the 1995 international conference on data engineering (ICDE’95), Taipei, Taiwan, pp 3–14Google Scholar
  9. Ahmed KM, El-Makky NM, Taha Y (2000) A note on “beyond market basket: generalizing association rules to correlations”. SIGKDD Explorations 1:46–48Google Scholar
  10. Asai T, Abe K, Kawasoe S, Arimura H, Satamoto H, Arikawa S (2002) Efficient substructure discovery from large semi-structured data. In: Proceedings of the 2002 SIAM international conference on data mining (SDM’02), Arlington, VA, pp 158–174Google Scholar
  11. Aumann Y, Lindell Y (1999) A statistical theory for quantitative association rules. In: Proceeding of the 1999 international conference on knowledge discovery and data mining (KDD’99), San Diego, CA, pp 261–270Google Scholar
  12. Bayardo RJ (1998) Efficiently mining long patterns from databases. In: Proceeding of the 1998 ACM-SIGMOD international conference on management of data (SIGMOD’98), Seattle, WA, pp 85–93Google Scholar
  13. Beil F, Ester M, Xu X (2002) Frequent term-based text clustering. In: Proceeding of the 2002 ACM SIGKDD international conference on knowledge discovery in databases (KDD’02), Edmonton, Canada, pp 436–442Google Scholar
  14. Bettini C, Sean Wang X, Jajodia S (1998) Mining temporal relationships with multiple granularities in time sequences. Bull Tech Committee Data Eng 21:32–38Google Scholar
  15. Beyer K, Ramakrishnan R (1999) Bottom-up computation of sparse and iceberg cubes. In: Proceeding of the 1999 ACM-SIGMOD international conference on management of data (SIGMOD’99), Philadelphia, PA, pp 359–370Google Scholar
  16. Blanchard J, Guillet F, Gras R, Briand H (2005) Using information-theoretic measures to assess association rule interestingness. In: Proceeding of the 2005 international conference on data mining (ICDM’05), Houston, TX, pp 66–73Google Scholar
  17. Bonchi F, Giannotti F, Mazzanti A, Pedreschi D (2003) Exante: anticipated data reduction in constrained pattern mining. In: Proceeding of the 7th European conference on principles and pratice of knowledge discovery in databases (PKDD’03), pp 59–70Google Scholar
  18. Bonchi F, Lucchese C (2004) On closed constrained frequent pattern mining. In: Proceeding of the 2004 international conference on data mining (ICDM’04), Brighton, UK, pp 35–42Google Scholar
  19. Borgelt C, Berthold MR (2002) Mining molecular fragments: finding relevant substructures of molecules. In: Proceeding of the 2002 international conference on data mining (ICDM’02), Maebashi, Japan, pp 211–218Google Scholar
  20. Brin S, Motwani R, Silverstein C (1997) Beyond market basket: generalizing association rules to correlations. In: Proceeding of the 1997 ACM-SIGMOD international conference on management of data (SIGMOD’97), Tucson, AZ, pp 265–276Google Scholar
  21. Brin S, Motwani R, Ullman JD, Tsur S (1997) Dynamic itemset counting and implication rules for market basket analysis. In: Proceeding of the 1997 ACM-SIGMOD international conference on management of data (SIGMOD’97), Tucson, AZ, pp 255–264Google Scholar
  22. Bucila C, Gehrke J, Kifer D, White W (2003) DualMiner: a dual-pruning algorithm for itemsets with constraints. Data Min knowl discov 7:241–272Google Scholar
  23. Burdick D, Calimlim M, Gehrke J (2001) MAFIA: a maximal frequent itemset algorithm for transactional databases. In: Proceeding of the 2001 international conference on data engineering (ICDE’01), Heidelberg, Germany, pp 443–452Google Scholar
  24. Calders T, Goethals B (2002) Mining all non-derivable frequent itemsets. In: Proceeding of the 2002 European conference on principles and pratice of knowledge discovery in databases (PKDD’02), Helsinki, Finland, pp 74–85Google Scholar
  25. Calders T, Goethals B (2005) Depth-first non-derivable itemset mining. In: Proceeding of the 2005 SIAM international conference on data mining (SDM’05), Newport Beach, CA, pp 250–261Google Scholar
  26. Cao H, Mamoulis N, Cheung DW (2005) Mining frequent spatio-temporal sequential patterns. In: Proceeding of the 2005 international conference on data mining (ICDM’05), Houston, TX, pp 82–89Google Scholar
  27. Chang J, Lee W (2003) Finding recent frequent itemsets adaptively over online data streams. In: Proceeding of the 2003 international conference on knowledge discovery and data mining (KDD’03), Washington, DC, pp 487–492Google Scholar
  28. Chen MS, Park JS, Yu PS (1996) Data mining for path traversal patterns in a web environment. In: Proceeding of the 16th international conference on distributed computing systems, pp 385–392Google Scholar
  29. Cheng CH, Fu AW, Zhang Y (1999) Entropy-based subspace clustering for mining numerical data. In: Proceeding of the 1999 international conference on knowledge discovery and data mining (KDD’99), San Diego, CA, pp 84–93Google Scholar
  30. Cheng H, Yan X, Han J (2004) IncSpan: incremental mining of sequential patterns in large In: Proceeding of the 2004 ACM SIGKDD international conference on knowledge discovery in databases (KDD’04), Seattle, WA, pp 527–532Google Scholar
  31. Cheng H, Yan X, Han J (2005) Seqindex: indexing sequences by sequential pattern analysis. In: Proceeding of the 2005 SIAM international conference on data mining (SDM’05), Newport Beach, CA, pp 601–605Google Scholar
  32. Cheng H, Yan X, Han J, Hsu C (2007) Discriminative frequent pattern analysis for effective classification. In: Proceeding of the 2007 international conference on data engineering (ICDE’07), Istanbul, TurkeyGoogle Scholar
  33. Cheung DW, Han J, Ng V, Fu A, Fu Y (1996) A fast distributed algorithm for mining association rules. In: Proceeding of the 1996 international conference on parallel and distributed information systems, Miami Beach, FL, pp 31–44Google Scholar
  34. Cheung DW, Han J, Ng V, Wong CY (1996) Maintenance of discovered association rules in large an incremental updating technique. In: Proceeding of the 1996 international conference on data engineering (ICDE’96), New Orleans, LA, pp 106–114Google Scholar
  35. Chi Y, Wang H, Yu PS, Muntz R (2004) Moment: maintaining closed frequent itemsets over a stream sliding window. In: Proceeding of the 2004 international conference on data mining (ICDM’04), Brighton, UK, pp 59–66Google Scholar
  36. Cong S, Han J, Padua D (2005) Parallel mining of closed sequential patterns. In: Proceeding of the 2005 ACM SIGKDD international conference on knowledge discovery in databases (KDD’05), Chicago, IL, pp 562–567Google Scholar
  37. Cong G, Tan K-L, Tung AKH, Xu X (2005) Mining top-k covering rule groups for gene expression data. In: Proceeding of the 2005 ACM-SIGMOD international conference on management of data (SIGMOD’05), Baltimore, MD, pp 670–681Google Scholar
  38. Deshpande M, Kuramochi M, Karypis G (2003) Frequent sub-structure-based approaches for classifying chemical compounds. In: Proceeding of the 2002 international conference on data mining (ICDM’03), Melbourne, FL, pp 35–42Google Scholar
  39. Dong G, Han J, Lam J, Pei J, Wang K, Zou W (2004) Mining constrained gradients in multi-dimensional databases. IEEE Trans Knowl Data Eng 16:922–938Google Scholar
  40. Dehaspe L, Toivonen H, King R (1998) Finding frequent substructures in chemical compounds. In: Proceeding of the 1998 international conference on knowledge discovery and data mining (KDD’98), New York, NY, pp 30–36Google Scholar
  41. Dong G, Li J (1999) Efficient mining of emerging patterns: discovering trends and differences. In: Proceeding of the 1999 international conference on knowledge discovery and data mining (KDD’99), San Diego, CA, pp 43–52Google Scholar
  42. Eirinaki M, Vazirgiannis M (2003) Web mining for web personalization. ACM Trans Inter Tech 3:1–27CrossRefGoogle Scholar
  43. Fukuda T, Morimoto Y, Morishita S, Tokuyama T (1996) Data mining using two-dimensional optimized association rules: scheme, algorithms, and visualization. In: Proceeding of the 1996 ACM-SIGMOD international conference management of data (SIGMOD’96), Montreal, Canada, pp 13–23Google Scholar
  44. Gade K, Wang J, Karypis G (2004) Efficient closed pattern mining in the presence of tough block constraints. In: Proceeding of the 2004 international conference on knowledge discovery and data mining (KDD’04), Seattle, WA, pp 138–147Google Scholar
  45. Garofalakis M, Rastogi R, Shim K (1999) SPIRIT: Sequential pattern mining with regular expression constraints. In: Proceeding of the 1999 international conference on Very large data bases (VLDB’99), Edinburgh, UK, pp 223–234Google Scholar
  46. Geerts F, Goethals B, Bussche J (2001) A tight upper bound on the number of candidate patterns. In: Proceeding of the 2001 international conference on data mining (ICDM’01), San Jose, CA, pp 155–162Google Scholar
  47. Gionis A, Kujala T, Mannila H (2003) Fragments of order. In: Proceeding of the 2003 international conference on knowledge discovery and data mining (KDD’03), Washington, DC, pp 129–136Google Scholar
  48. Gionis A, Mannila H, Mielikäinen T, Tsaparas P (2006) Assessing data mining results via swap randomization. In: Proceeding of the 2006 ACM SIGKDD international conference on knowledge discovery in databases (KDD’06), Philadelphia, PA, pp 167–176Google Scholar
  49. Goethals B, Zaki M (2003) An introduction to workshop on frequent itemset mining implementations. In: Proceeding of the ICDM’03 international workshop on frequent itemset mining implementations (FIMI’03), Melbourne, FL, pp 1–13Google Scholar
  50. Grahne G, Lakshmanan L, Wang X (2000) Efficient mining of constrained correlated sets. In: Proceeding of the 2000 international conference on data engineering (ICDE’00), San Diego, CA, pp 512–521Google Scholar
  51. Grahne G, Zhu J (2003)Efficiently using prefix-trees in mining frequent itemsets. In: Proceeding of the ICDM’03 international workshop on frequent itemset mining implementations (FIMI’03), Melbourne, FL, pp 123–132Google Scholar
  52. Han J, Dong G, Yin Y (1999) Efficient mining of partial periodic patterns in time series database. In: Proceeding of the 1999 international conference on data engineering (ICDE’99), Sydney, Australia, pp 106–115Google Scholar
  53. Han J, Fu Y (1995) Discovery of multiple-level association rules from large databases. In: Proceeding of the 1995 international conference on very large data bases (VLDB’95), Zurich, Switzerland, pp 420–431Google Scholar
  54. Han J, Kamber M (2006) Data mining: concepts and techniques, 2nd edn. Morgan KaufmannGoogle Scholar
  55. Han J, Pei J, Dong G, Wang K (2001) Efficient computation of iceberg cubes with complex measures. In: Proceeding of the 2001 ACM-SIGMOD international conference on management of data (SIGMOD’01), Santa Barbara, CA, pp 1–12Google Scholar
  56. Han J, Pei J, Yin Y (2000) Mining frequent patterns without candidate generation. In: Proceeding of the 2000 ACM-SIGMOD international conference on management of data (SIGMOD’00), Dallas, TX, pp 1–12Google Scholar
  57. Hilderman RJ, Hamilton HJ (2001) Knowledge discovery and measures of interest. Kluwer AcademicGoogle Scholar
  58. Holder LB, Cook DJ, Djoko S (1994) Substructure discovery in the subdue system. In: Proceeding of the AAAI’94 workshop knowledge discovery in databases (KDD’94), Seattle, WA, pp 169–180Google Scholar
  59. Holsheimer M, Kersten M, Mannila H, Toivonen H (1995) A perspective on databases and data mining. In Proceeding of the 1995 international conference on knowledge discovery and data mining (KDD’95), Montreal, Canada, pp 150–155Google Scholar
  60. Huan J, Wang W, Bandyopadhyay D, Snoeyink J, Prins J, Tropsha A (2004) Mining spatial motifs from protein structure graphs. In: Proceeding of the 8th international conference on research in computational molecular biology (RECOMB), San Diego, CA, pp 308–315Google Scholar
  61. Huan J, Wang W, Prins J (2003) Efficient mining of frequent subgraph in the presence of isomorphism. In: Proceeding of the 2003 international conference on data mining (ICDM’03), Melbourne, FL, pp 549–552Google Scholar
  62. Huan J, Wang W, Prins J, Yang J (2004) Spin: mining maximal frequent subgraphs from graph databases. In: Proceeding of the 2004 ACM SIGKDD international conference on knowledge discovery in databases (KDD’04), Seattle, WA, pp 581–586Google Scholar
  63. Imielinski T, Khachiyan L, Abdulghani A (2002) Cubegrades: generalizing association rules. Data Min Knowl Discov 6:219–258CrossRefGoogle Scholar
  64. Inokuchi A, Washio T, Motoda H (2000) An apriori-based algorithm for mining frequent substructures from graph data. In: Proceeding of the 2000 European symposium on the principle of data mining and knowledge discovery (PKDD’00), Lyon, France, pp 13–23Google Scholar
  65. Jaroszewicz S, Scheffer T (2005) Fast discovery of unexpected patterns in data relative to a bayesian network. In: Proceeding of the 2005 ACM SIGKDD international conference on knowledge discovery and data mining (KDD’05), Chicago, IL, pp 118–127Google Scholar
  66. Jaroszewicz S, Simovici D (2004) interestingness of frequent itemsets using bayesian networks as background knowledge. In: Proceeding of the 2004 ACM SIGKDD international conference on knowledge discovery and data mining (KDD’04), Seattle, WA, pp 178–186Google Scholar
  67. Ji X, Bailey J, Dong G (2005) Mining minimal distinguishing subsequence patterns with gap constraints. In: Proceeding of the 2005 international conference on data mining (ICDM’05), Houston, TX, pp 194–201Google Scholar
  68. Jin R, Agrawal G (2005) An algorithm for in-core frequent itemset mining on streaming data. In Proceeding of the 2005 international conference on data mining (ICDM’05), Houston, TX, pp 210–217Google Scholar
  69. Jin R, Wang C, Polshakov D, Parthasarathy S, Agrawal G (2005) Discovering frequent topological structures from graph datasets. In: Proceeding of the 2005 ACM SIGKDD international conference on knowledge discovery in databases (KDD’05), Chicago, IL, pp 606–611Google Scholar
  70. Kamber M, Han J, Chiang JY (1997) Metarule-guided mining of multi-dimensional association rules using data cubes. In: Proceeding of the 1997 international conference on knowledge discovery and data mining (KDD’97), Newport Beach, CA, pp 207–210Google Scholar
  71. Karp RM, Papadimitriou CH, Shenker S (2003) A simple algorithm for finding frequent elements in streams and bags. ACM Trans Database Syst, 28:51–55CrossRefGoogle Scholar
  72. Koperski K, Han J (1995) Discovery of spatial association rules in geographic information databases. In: Proceeding of the 1995 international symposium on large spatial databases (SSD’95), Portland, ME, pp 47–66Google Scholar
  73. Kosala R, Blockeel H (2000) Web mining research: a survey. SIGKDD Explor 2Google Scholar
  74. Kuramochi M, Karypis G (2001) Frequent subgraph discovery. In: Proceeding of the 2001 international conference on data mining (ICDM’01), San Jose, CA, pp 313–320Google Scholar
  75. Kuramochi M, Karypis G (2004) GREW: a scalable frequent subgraph discovery algorithm. In Proceeding of the 2004 international conference on data mining (ICDM’04), Brighton, UK, pp 439–442Google Scholar
  76. Lakshmanan LVS, Ng R, Han J, Pang A (1999) Optimization of constrained frequent set queries with 2-variable constraints. In: Proceeding of the 1999 ACM-SIGMOD international conference on management of data (SIGMOD’99), Philadelphia, PA, pp 157–168Google Scholar
  77. Lakshmanan LVS, Pei J, Han J (2002) Quotient cube: how to summarize the semantics of a data cube. In: Proceeding of the 2002 international conference on very large data bases (VLDB’02), Hong Kong, China, pp 778–789Google Scholar
  78. Lee Y-K, Kim W-Y, Cai YD, Han J (2003) CoMine: efficient mining of correlated patterns. In: Proceeding of the 2003 international conference on data mining (ICDM’03), Melbourne, FL, pp 581–584Google Scholar
  79. Lent B, Swami A, Widom J (1997) Clustering association rules. In: Proceeding of the 1997 international conference on data engineering (ICDE’97), Birmingham, England, pp 220–231Google Scholar
  80. Li Z, Chen Z, Srinivasan SM, Zhou Y (2004) C-Miner: mining block correlations in storage systems. In: Proceeding of the 2004 USENIX conference on file and storage technologies (FAST’04), San Francisco, CA, pp 173–186Google Scholar
  81. Li J, Dong G, Ramamohanrarao K (2000) Making use of the most expressive jumping emerging patterns for classification. In: Proceeding of the 2000 Pacific-Asia conference on knowledge discovery and data mining (PAKDD’00), Kyoto, Japan, pp 220–232Google Scholar
  82. Li X, Han J, Kim S (2006) Motion-alert: automatic anomaly detection in massive moving objects. In: IEEE international conference on intelligence and security informatics (ISI’06), San Diego, CA, pp 166–177Google Scholar
  83. Li W, Han J, Pei J (2001) CMAR: accurate and efficient classification based on multiple class-association rules. In: Proceeding of the 2001 international conference on data mining (ICDM’01), San Jose, CA, pp 369–376Google Scholar
  84. Li Z, Lu S, Myagmar S, Zhou Y (2004) CP-Miner: a tool for finding copy-paste and related bugs in operating system code. In: Proceeding of the 2004 symposium on operating systems design and implementation (OSDI’04), San Francisco, CA, pp 289–302Google Scholar
  85. Li Z, Zhou Y (2005) PR-Miner: Automatically extracting implicit programming rules and detecting violations in large software code. In: Proceeding of the 2005 ACM SIGSOFT symposium on foundations software eng (FSE’05), Lisbon, Portugal, pp 306–315Google Scholar
  86. Lin C, Chiu D, Wu Y, Chen A (2005) Mining frequent itemsets from data streams with a time-sensitive sliding window. In: Proceeding of the 2005 SIAM international conference on data mining (SDM’05), Newport Beach, pp 68–79Google Scholar
  87. Liu H, Han J, Xin D, Shao Z (2006) Mining frequent patterns on very high dimensional data: a top-down row enumeration approach. In: Proceeding of the 2006 SIAM international conference on data mining (SDM’06), Bethesda, MD, pp 280–291Google Scholar
  88. Liu B, Hsu W, Ma Y (1998) Integrating classification and association rule mining. In: Proceeding of the 1998 international conference on knowledge discovery and data mining (KDD’98), New York, NY, pp 80–86Google Scholar
  89. Liu G, Li J, Wong L, Hsu W (2006) Positive borders or negative borders: how to make lossless generator based representations concise. In: Proceeding of the 2006 SIAM international conference on data mining (SDM’06), Bethesda, MD, pp 467–471Google Scholar
  90. Liu G, Lu H, Lou W, Yu JX (2003) On computing, storing and querying frequent patterns. In: Proceeding of the 2003 ACM SIGKDD international conference on knowledge discovery and data mining (KDD’03), Washington, DC, pp 607–612Google Scholar
  91. Liu J, Paulsen S, Sun X, Wang W, Nobel A, Prins J (2006) Mining approximate frequent itemsets in the presence of noise: algorithm and analysis. In: Proceeding of the 2006 SIAM international conference on data mining (SDM’06), Bethesda, MD, pp 405–416Google Scholar
  92. Liu J, Pan Y, Wang K, Han J (2002) Mining frequent item sets by opportunistic projection. In: Proceeding of the 2002 ACM SIGKDD international conference on knowledge discovery in databases (KDD’02), Edmonton, Canada, pp 239–248Google Scholar
  93. Liu C, Yan X, Yu H, Han J, Yu PS (2005) Mining behavior graphs for “backtrace” of noncrashing bugs. In: Proceeding of the 2005 SIAM international conference on data mining (SDM’05), Newport Beach, pp 286–297Google Scholar
  94. Lu H, Han J, Feng L (1998) Stock movement and n-dimensional inter-transaction association rules. In: Proceeding of the 1998 SIGMOD workshop research issues on data mining and knowledge discovery (DMKD’98), Seattle, WA, pp 12:1–12:7Google Scholar
  95. Luo C, Chung S (2005) Efficient mining of maximal sequential patterns using multiple samples. In: Proceeding of the 2005 SIAM international conference on data mining (SDM’05), Newport Beach, CA, pp 415–426Google Scholar
  96. Ma S, Hellerstein JL (2001) Mining partially periodic event patterns with unknown periods. In: Proceeding of the 2001 international conference on data engineering (ICDE’01), Heidelberg, Germany, pp 205–214Google Scholar
  97. Manku G, Motwani R (2002) Approximate frequency counts over data streams. In: Proceeding of the 2002 international conference on very large data bases (VLDB’02), Hong Kong, China, pp 346–357Google Scholar
  98. Mannila H, Toivonen H, Verkamo AI (1994) Efficient algorithms for discovering association rules. In: Proceeding of the AAAI’94 workshop knowledge discovery in databases (KDD’94), Seattle, WA, pp 181–192Google Scholar
  99. Mannila H, Toivonen H, Verkamo AI (1997) Discovery of frequent episodes in event sequences. Data Min Knowl Discov 1:259–289CrossRefGoogle Scholar
  100. Mei Q, Xin D, Cheng H, Han J, Zhai C (2006) Generating semantic annotations for frequent patterns with context analysis. In: Proceeding of the 2006 ACM SIGKDD international conference on knowledge discovery in databases (KDD’06), Philadelphia, PA, pp 337–346Google Scholar
  101. Metwally A, Agrawal D, El Abbadi A (2005) Efficient computation of frequent and top-k elements in data streams. In: Proceeding of the 2005 international conference on database theory (ICDT’05), Edinburgh, UK, pp 398–412Google Scholar
  102. Miller RJ, Yang Y (1997) Association rules over interval data. In: Proceeding of the 1997 ACM-SIGMOD international conference on management of data (SIGMOD’97), Tucson, AZ, pp 452–461Google Scholar
  103. Nanopoulos A, Manolopoulos Y (2001) Mining patterns from graph traversals. Data Knowl Eng 37:243–266MATHCrossRefGoogle Scholar
  104. Ng R, Lakshmanan LVS, Han J, Pang A (1998) Exploratory mining and pruning optimizations of constrained associations rules. In: Proceeding of the 1998 ACM-SIGMOD international conference on management of data (SIGMOD’98), Seattle, WA, pp 13–24Google Scholar
  105. Nijssen S, Kok J (2004) A quickstart in frequent structure mining can make a difference. In: Proceeding of the 2004 ACM SIGKDD international conference on kowledge discovery in databases (KDD’04), Seattle, WA, pp 647–652Google Scholar
  106. Omiecinski E (2003) Alternative interest measures for mining associations. IEEE Trans Knowl and data engineering 15:57–69CrossRefGoogle Scholar
  107. Özden B, Ramaswamy S, Silberschatz A (1998) Cyclic association rules. In: Proceeding of the 1998 international conference on data engineering (ICDE’98), Orlando, FL, pp 412–421Google Scholar
  108. Pan F, Cong G, Tung AKH, Yang J, Zaki M (2003) CARPENTER: finding closed patterns in long biological datasets. In: Proceeding of the 2003 ACM SIGKDD international conference on knowledge discovery and data mining (KDD’03), Washington, DC, pp 637–642Google Scholar
  109. Pan F, Tung AKH, Cong G, Xu X (2004) COBBLER: combining column, and row enumeration for closed pattern discovery. In: Proceeding of the 2004 international conference on scientific and statistical database management (SSDBM’04), Santorini Island, Greece, pp 21–30Google Scholar
  110. Park JS, Chen MS, Yu PS (1995) An effective hash-based algorithm for mining association rules. In: Proceeding of the 1995 ACM-SIGMOD international conference on management of data (SIGMOD’95), San Jose, CA, pp 175–186Google Scholar
  111. Park JS, Chen MS, Yu PS (1995) Efficient parallel mining for association rules. In: Proceeding of the 4th international conference on information and knowledge management, Baltimore, MD, pp 31–36Google Scholar
  112. Pasquier N, Bastide Y, Taouil R, Lakhal L (1999) Discovering frequent closed itemsets for association rules. In: Proceeding of the 7th international conference on database theory (ICDT’99), Jerusalem, Israel, pp 398–416Google Scholar
  113. Pei J, Dong G, Zou W, Han J (2002) On computing condensed frequent pattern bases. In: Proceeding of the 2002 international conference on data mining (ICDM’02), Maebashi, Japan, pp 378–385Google Scholar
  114. Pei J, Han J, Lakshmanan LVS (2001) Mining frequent itemsets with convertible constraints. In: Proceeding of the 2001 international conference on data engineering (ICDE’01), Heidelberg, Germany, pp 433–332Google Scholar
  115. Pei J, Han J, Mao R (2000) CLOSET: an efficient algorithm for mining frequent closed itemsets. In: Proceeding of the 2000 ACM-SIGMOD international workshop data mining and knowledge discovery (DMKD’00), Dallas, TX, pp 11–20Google Scholar
  116. Pei J, Han J, Mortazavi-Asl B, Pinto H, Chen Q, Dayal U, Hsu M-C (2001) PrefixSpan: mining sequential patterns efficiently by prefix-projected pattern growth. In: Proceeding of the 2001 international conference on data engineering (ICDE’01), Heidelberg, Germany, pp 215–224Google Scholar
  117. Pei J, Han J, Mortazavi-Asl B, Wang J, Pinto H, Chen Q, Dayal U, Hsu M-C (2004) Mining sequential patterns by pattern-growth: the prefixspan approach. IEEE Trans Knowl Data Eng 16:1424–1440Google Scholar
  118. Pei J, Han J, Mortazavi-Asl B, Zhu H (2000) Mining access patterns efficiently from web logs. In: Proceeding of the 2000 Pacific-Asia conference on knowledge discovery and data mining (PAKDD’00), Kyoto, Japan, pp 396–407Google Scholar
  119. Pei J, Han J, Wang W (2002) Constraint-based sequential pattern mining in large databases. In: Proceeding of the 2002 international conference on information and knowledge management (CIKM’02), McLean, VA, pp 18–25Google Scholar
  120. Pei J, Liu J, Wang H, Wang K, Yu PS, Yang J (2005) Efficiently mining frequent closed partial orders. In: Proceeding of the 2005 international conference on data mining (ICDM’05), Houston, TX, pp 753–756Google Scholar
  121. Piatetsky-Shapiro G (1991) Notes of AAAI’91 workshop knowledge discovery in databases (KDD’91). AAAI/MIT Press, Anaheim, CAGoogle Scholar
  122. Pinto H, Han J, Pei J, Wang K, Chen Q, Dayal U (2001) Multi-dimensional sequential pattern mining. In: Proceeding of the 2001 international conference on information and knowledge management (CIKM’01), Atlanta, GA, pp 81–88Google Scholar
  123. Punin J, Krishnamoorthy M, Zaki M (2001) Web usage mining: languages and algorithms. Springer-VerlagGoogle Scholar
  124. Ramesh G, Maniatty WA, Zaki MJ (2003) Feasible itemset distributions in data mining: theory and application. In: Proceeding of the 2003 ACM symposium on principles of database systems (PODS’03), San Diego, CA, pp 284–295Google Scholar
  125. Sarawagi S, Thomas S, Agrawal R (1998) Integrating association rule mining with relational database systems: alternatives and implications. In: Proceeding of the 1998 ACM-SIGMOD international conference on management of data (SIGMOD’98), Seattle, WA, pp 343–354Google Scholar
  126. Savasere A, Omiecinski E, Navathe S (1995) An efficient algorithm for mining association rules in large databases. In: Proceeding of the 1995 international conference on very large data bases (VLDB’95), Zurich, Switzerland, pp 432–443Google Scholar
  127. Seppänen J, Mannila H (2004) Dense itemsets. In: Proceeding of the 2004 international conference on knowledge discovery and data mining (KDD’04), Seattle, WA, pp 683–688Google Scholar
  128. Shekar B, Natarajan R (2004) A transaction-based neighbourhood-driven approach to quantifying interestingness of assoication rules. In: Proceeding of the 2004 international conference on data mining (ICDM’04), Brighton, UK, pp 194–201Google Scholar
  129. Siebes A, Vreeken J, Leeuwen M (2006) Item sets that compress. In: Proceeding of the 2006 SIAM international conference on data mining (SDM’06), Bethesda, MD, pp 393–404Google Scholar
  130. Silverstein C, Brin S, Motwani R, Ullman JD (1998) Scalable techniques for mining causal structures. In: Proceeding of the 1998 international conference on very large data bases (VLDB’98), New York, NY, pp 594–605Google Scholar
  131. Sismanis Y, Roussopoulos N, Deligianannakis A, Kotidis Y (2002) Dwarf: shrinking the petacube. In: Proceeding of the 2002 ACM-SIGMOD international conference on management of data (SIGMOD’02), Madison, WI, pp 464–475Google Scholar
  132. Srikant R, Agrawal R (1995) Mining generalized association rules. In: Proceeding of the 1995 international conference on very large data bases (VLDB’95), Zurich, Switzerland, pp 407–419Google Scholar
  133. Srikant R, Agrawal R (1996) Mining sequential patterns: generalizations and performance improvements. In: Proceeding of the 5th international conference on extending database technology (EDBT’96), Avignon, France, pp 3–17Google Scholar
  134. Srivastava J, Cooley R, Deshpande M, Tan PN (2000) Web usage mining: discovery and applications of usage patterns from web data. SIGKDD Explor 1:12–23Google Scholar
  135. Steinbach M, Tan P, Kumar V (2004) Support envelopes: A technique for exploring the structure of association patterns. In: Proceeding of the 2004 ACM SIGKDD international conference on knowledge discovery in databases (KDD’04), Seattle, WA, pp 296–305Google Scholar
  136. Tan P-N, Kumar V, Srivastava J (2002) Selecting the right interestingness measure for association patterns. In: Proceeding of the 2002 ACM SIGKDD international conference on knowledge discovery in databases (KDD’02), Edmonton, Canada, pp 32–41Google Scholar
  137. Ting R, Bailey J (2006) Mining minimal contrast subgraph patterns. In: Proceeding of the 2006 SIAM international conference on data mining (SDM’06), Bethesda, MD, pp 638–642Google Scholar
  138. Toivonen H (1996) Sampling large databases for association rules. In: Proceeding of the 1996 international conference on very large data bases (VLDB’96), Bombay, India, pp 134–145Google Scholar
  139. Ukkonen A, Fortelius M, Mannila H (2005) Finding partial orders from unordered 0-1 data. In: Proceeding of the 2005 international conference on knowledge discovery and data mining (KDD’05), Chicago, IL, pp 285–293Google Scholar
  140. Vanetik N, Gudes E, Shimony SE (2002) Computing frequent graph patterns from semistructured data. In: Proceeding of the 2002 international conference on data mining (ICDM’02), Maebashi, Japan, pp 458–465Google Scholar
  141. Wang J, Han J (2004) BIDE: Efficient mining of frequent closed sequences. In: Proceeding of the 2004 international conference on data engineering (ICDE’04), Boston, MA, pp 79–90Google Scholar
  142. Wang J, Han J, Lu Y, Tzvetkov P (2005) TFP: An efficient algorithm for mining top-k frequent closed itemsets. IEEE Trans Knowl Data Eng 17:652–664CrossRefGoogle Scholar
  143. Wang J, Han J, Pei J (2003) CLOSET+: searching for the best strategies for mining frequent closed itemsets. In: Proceeding of the 2003 ACM SIGKDD international conference on knowledge discovery and data mining (KDD’03), Washington, DC, pp 236–245Google Scholar
  144. Wang K, Jiang Y, Lakshmanan L (2003) Mining unexpected rules by pushing user dynamics. In: Proceeding of the 2003 ACM SIGKDD international conference on knowledge discovery in databases (KDD’03), Washington, DC, pp 246–255Google Scholar
  145. Wang J, Karypis G (2005) HARMONY: efficiently mining the best rules for classification. In: Proceeding of the 2005 SIAM conference on data mining (SDM’05), Newport Beach, CA, pp 205–216Google Scholar
  146. Wang W, Lu H, Feng J, Yu JX (2002) Condensed cube: an effective approach to reducing data cube size. In: Proceeding of the 2002 international conference on data engineering (ICDE’02), San Fransisco, CA, pp 155–165Google Scholar
  147. Wang C, Wang W, Pei J, Zhu Y, Shi B (2004) Scalable mining of large disk-base graph databases. In: Proceeding of the 2004 ACM SIGKDD international conference on knowledge discovery in databases (KDD’04), Seattle, WA, pp 316–325Google Scholar
  148. Wang H, Wang W, Yang J, Yu PS (2002) Clustering by pattern similarity in large data sets. In: Proceeding of the 2002 ACM-SIGMOD international conference on management of data (SIGMOD’02), Madison, WI, pp 418–427Google Scholar
  149. Washio T, Motoda H (2003) State of the art of graph-based data mining. SIGKDD Explor 5:59–68Google Scholar
  150. Xin D, Han J, Li X, Wah WB (2003) Star-cubing: computing iceberg cubes by top-down and bottom-up integration. In: Proceeding of the 2003 international conference on very large data bases (VLDB’03), Berlin, Germany, pp 476–487Google Scholar
  151. Xin D, Han J, Shao Z, Liu H (2006) C-cubing: efficient computation of closed cubes by aggregation-based checking. In: Proceeding of the 2006 international conference on data engineering (ICDE’06), Atlanta, Georgia, p 4Google Scholar
  152. Xin D, Han J, Yan X, Cheng H (2005) Mining compressed frequent-pattern sets. In: Proceeding of the 2005 international conference on very large data bases (VLDB’05), Trondheim, Norway, pp 709–720Google Scholar
  153. Xin D, Shen X, Mei Q, Han J (2006) Discovering interesting patterns through user’s interactive feedback. In: Proceeding of the 2006 ACM SIGKDD international conference on knowledge discovery in databases (KDD’06), Philadelphia, PA, pp 773–778Google Scholar
  154. Xiong H, Shekhar S, Huang Y, Kumar V, Ma X, Yoo JS (2004) A framework for discovering co-location patterns in data sets with extended spatial objects. In: Proceeding of the 2004 SIAM international conference on data mining (SDM’04), Lake Buena Vista, FL, pp 78–89Google Scholar
  155. Yan X, Cheng H, Han J, Xin D (2005) Summarizing itemset patterns: a profile-based approach. In: Proceeding of the 2005 ACM SIGKDD international conference on knowledge discovery in databases (KDD’05), Chicago, IL, pp 314–323Google Scholar
  156. Yan X, Han J (2002) gSpan: graph-based substructure pattern mining. In: Proceeding of the 2002 international conference on data mining (ICDM’02), Maebashi, Japan, pp 721–724Google Scholar
  157. Yan X, Han J (2003) CloseGraph: mining closed frequent graph patterns. In: Proceeding of the 2003 ACM SIGKDD international conference on knowledge discovery and data mining (KDD’03), Washington, DC, pp 286–295Google Scholar
  158. Yan X, Han J, Afshar R (2003) CloSpan: mining closed sequential patterns in large datasets. In: Proceeding of the 2003 SIAM international conference on data mining (SDM’03), San Fransisco, CA, pp 166–177Google Scholar
  159. Yan X, Yu PS, Han J (2004) Graph indexing: a frequent structure-based approach. In: Proceeding of the 2004 ACM-SIGMOD international conference on management of data (SIGMOD’04), Paris, France, pp 335–346Google Scholar
  160. Yan X, Yu PS, Han J (2005) Substructure similarity search in graph databases. In: Proceeding of the 2005 ACM-SIGMOD international conference on management of data (SIGMOD’05), Baltimore, MD, pp 766–777Google Scholar
  161. Yan X, Zhou XJ, Han J (2005) Mining closed relational graphs with connectivity constraints. In: Proceeding of the 2005 ACM SIGKDD international conference on knowledge discovery in databases (KDD’05), Chicago, IL, pp 324–333Google Scholar
  162. Yan X, Zhu F, Han J, Yu PS (2006) Searching substructures with superimposed distance. In: Proceeding of the 2006 international conference on data engineering (ICDE’06), Atlanta, Georgia, p 88Google Scholar
  163. Yang G (2004) The complexity of mining maximal frequent itemsets and maximal frequent patterns. In: Proceeding of the 2004 ACM SIGKDD international conference on kowledge discovery in databases (KDD’04), Seattle, WA, pp 344–353Google Scholar
  164. Yang C, Fayyad U, Bradley PS (2001) Efficient discovery of error-tolerant frequent itemsets in high dimensions. In: Proceeding of the 2001 ACM SIGKDD international conference on knowledge discovery in databases (KDD’01), San Fransisco, CA, pp 194–203Google Scholar
  165. Yang LH, Lee M-L, Hsu W (2003) Efficient mining of xml query patterns for caching. In: VLDB, pp 69–80Google Scholar
  166. Yang J, Wang W (2003) CLUSEQ: efficient and effective sequence clustering. In: Proceeding of the 2003 international conference on data engineering (ICDE’03), Bangalore, India, pp 101–112Google Scholar
  167. Yang J, Wang W, Yu PS (2003) Mining asynchronous periodic patterns in time series data. IEEE Trans Knowl Data Eng 15:613–628CrossRefGoogle Scholar
  168. Yin X, Han J (2003) CPAR: classification based on predictive association rules. In: Proceeding of the 2003 SIAM international conference on data mining (SDM’03), San Fransisco, CA, pp 331–335Google Scholar
  169. Yoda K, Fukuda T, Morimoto Y, Morishita S, Tokuyama T (1997) Computing optimized rectilinear regions for association rules. In: Proceeding of the 1997 international conference on knowledge discovery and data mining (KDD’97), Newport Beach, CA, pp 96–103Google Scholar
  170. Yu JX, Chong Z, Lu H, Zhou A (2004) False positive or false negative: mining frequent itemsets from high speed transactional data streams. In: Proceeding of the 2004 international conference on very large data bases (VLDB’04), Toronto, Canada, pp 204–215Google Scholar
  171. Yun U, Leggett J (2005) Wfim: weighted frequent itemset mining with a weight range and a minimum weight. In: Proceeding of the 2005 SIAM international conference on data mining (SDM’05), Newport Beach, CA, pp 636–640Google Scholar
  172. Zaïane OR, Han J, Zhu H (2000) Mining recurrent items in multimedia with progressive resolution refinement. In: Proceeding of the 2000 international conference on data engineering (ICDE’00), San Diego, CA, pp 461–470Google Scholar
  173. Zaki MJ (1998) Efficient enumeration of frequent sequences. In: Proceeding of the 7th international conference on information and knowledge management (CIKM’98), Washington, DC, pp 68–75Google Scholar
  174. Zaki MJ (2000) Scalable algorithms for association mining. IEEE Trans Knowl Data Eng 12:372–390CrossRefGoogle Scholar
  175. Zaki M (2001) SPADE: an efficient algorithm for mining frequent sequences. Mach Learn 40:31–60CrossRefGoogle Scholar
  176. Zaki MJ (2002) Efficiently mining frequent trees in a forest. In: Proceeding of the 2002 ACM SIGKDD international conference on knowledge discovery in databases (KDD’02), Edmonton, Canada, pp 71–80Google Scholar
  177. Zaki MJ, Hsiao CJ (2002) CHARM: an efficient algorithm for closed itemset mining. In: Proceeding of the 2002 SIAM international conference on data mining (SDM’02), Arlington, VA, pp 457–473Google Scholar
  178. Zaki MJ, Lesh N, Ogihara M (1998) PLANMINE: sequence mining for plan failures. In: Proceeding of the 1998 international conference on knowledge discovery and data mining (KDD’98), New York, NY, pp 369–373Google Scholar
  179. Zaki MJ, Parthasarathy S, Ogihara M, Li W (1997) Parallel algorithm for discovery of association rules. data mining knowl discov, 1:343–374CrossRefGoogle Scholar
  180. Zhang X, Mamoulis N, Cheung DW, Shou Y (2004) Fast mining of spatial collocations. In: Proceeding of the 2004 ACM SIGKDD international conference on knowledge discovery in databases (KDD’04), Seattle, WA, pp 384–393Google Scholar
  181. Zhang H, Padmanabhan B, Tuzhilin A (2004) On the discovery of significant statistical quantitative rules. In: Proceeding of the 2004 international conference on knowledge discovery and data mining (KDD’04), Seattle, WA, pp 374–383Google Scholar
  182. Zhu F, Yan X, Han J, Yu PS, Cheng H (2007) Mining colossal frequent patterns by core pattern fusion. In: Proceeding of the 2007 international conference on data engineering (ICDE’07), Istanbul, TurkeyGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of IllinoisUrbanaUSA

Personalised recommendations