, Volume 71, Issue 6, pp 1063–1077 | Cite as

In vitro cytogenetic assessment and comparison of vildagliptin and sitagliptin

  • Ceren Börçek KasurkaEmail author
  • Mehmet Elbistan
  • Ayşegül Atmaca
  • Zülal Atlı Şekeroğlu
Original Article


Vildagliptin and sitagliptin are commonly used antidiabetic drugs. Chromosomal aberration (CA), sister chromatid exchange (SCE) and cytokinesis-block micronucleus (CBMN) assays were employed to assess and compare cytotoxic and genotoxic effects of these drugs. Peripheral lymphocytes were exposed to 125 μg/ml, 250 μg/ml and 500 μg/ml of vildagliptin and 250 μg/ml, 500 μg/ml and 1000 μg/ml of sitagliptin for 24 h and 48 h with and without exogenous metabolic activation. At the end of the study, it was determined that these drugs and their metabolites had no genotoxic effects on CA, SCE and CBMN. On the other hand, parallel to the increase in dose, vildagliptin showed weak cytotoxicity on the mitotic index, and depending on its increase in dose; sitagliptin caused potential cytotoxicity and cytostatic effect on the mitotic index, nuclear division index and proliferation index. Due to their cytotoxic and cytostatic potential, these drugs inhibit cell proliferation.


Vildagliptin Sitagliptin Antidiabetic In vitro genotoxicity Comparison 



This study was supported by Ondokuz Mayıs University with PYO.TIP.1904-15.030 project numbers. We also thank Seval Kontaş Yedier for her technical help.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflicts of interest.


  1. Amritha CA, Kumaravelu P, Chellathai DD (2015) Evaluation of anti cancer effects of DPP-4 inhibitors in colon cancer- an invitro study. J Clin Diagn Res 9:FC14–FC16. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Andrade SE et al (2004) Prescription drug use in pregnancy. Am J Obstet Gynecol 191:398–407. CrossRefPubMedGoogle Scholar
  3. Atlı Şekeroğlu Z, Şekeroğlu V (2011) Genetik toksisite testleri. TÜBAV Bilim Dergisi 4:221–229Google Scholar
  4. Caballero AE (2017) Long-term studies of treatments for type 2 diabetes. Postgrad Med 129:352–365. CrossRefPubMedGoogle Scholar
  5. Cordero OJ, Salgado FJ, Nogueira M (2009) On the origin of serum CD26 and its altered concentration in cancer patients Cancer Immunology. Immunotherapy 58:1723–1747. CrossRefGoogle Scholar
  6. Corvi R, Madia F (2017) In vitro genotoxicity testing—can the performance be enhanced? Food Chem Toxicol 106:600–608. CrossRefPubMedGoogle Scholar
  7. DeFronzo RA et al (2015) Type 2 diabetes mellitus. Nat Rev Dis Primers 1:15019. CrossRefPubMedGoogle Scholar
  8. Eastmond DA et al (2009) Mutagenicity testing for chemical risk assessment: update of the WHO/IPCS harmonized scheme. Mutagenesis 24:341–349CrossRefGoogle Scholar
  9. EMA (2007) Sitagliptin (Januvia) scientific discussion. Accessed 06 Feb 2019
  10. EMA EMA (2012) Vildagliptin (Galvus) scientific discussion. Accessed 06 Feb 2019
  11. Engüzel C (2015) Bir anti-diyabetik ilaç etken maddesi olan sitagliptin’in tek başına ve metformin ile birlikte ın vıtro genotoksik etkilerinin belirlenmesi. Yüksek Lisans Tezi, Gazi ÜniversitesiGoogle Scholar
  12. Evans H, O’Riordan ML (1975) Human peripheral blood lymphocytes for the analysis of chromosome aberrations in mutagen tests. Mutat Res 31:135–148CrossRefGoogle Scholar
  13. Femia AP, Raimondi L, Maglieri G, Lodovici M, Mannucci E, Caderni G (2013) Long-term treatment with Sitagliptin, a dipeptidyl peptidase-4 inhibitor, reduces colon carcinogenesis and reactive oxygen species in 1,2-dimethylhydrazine-induced rats. Int J Cancer 133:2498–2503. CrossRefPubMedGoogle Scholar
  14. Fenech M (2000) The in vitro micronucleus technique. Mutat Res 455:81–95. CrossRefPubMedGoogle Scholar
  15. Giovannucci E et al (2010) Diabetes and cancer: a consensus report. CA Cancer J Clin 60:207–221. CrossRefPubMedGoogle Scholar
  16. Gonzalez-Gil G, Navarrete M (1982) On the mechanism of differential Giemsa staining of BrdU-substituted chromatids. Chromosoma 86:375–382CrossRefGoogle Scholar
  17. Harishankar MK, Logeshwaran S, Sujeevan S, Aruljothi KN, Dannie MA, Devi A (2015) Genotoxicity evaluation of metformin and glimepiride by micronucleus assay in exfoliated urothelial cells of type 2 diabetes mellitus patients. Food Chem Toxicol 83:146–150. CrossRefPubMedGoogle Scholar
  18. Hayashi M (2016) The micronucleus test—most widely used in vivo genotoxicity test. Genes Environ 38:18. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Jena GB, Kaul CL, Ramarao P (2002) Genotoxicity testing. A regulatory requirement for drug discovery and development: impact of Ich guidelines. Indian J Pharmacol 34:86–99Google Scholar
  20. Kocaman AY, Rencüzoğulları E, Topaktaş M (2014) In vitro investigation of the genotoxic and cytotoxic effects of thiacloprid in cultured human peripheral blood lymphocytes. Environ Toxicol 29:631–641CrossRefGoogle Scholar
  21. Kontaş S, Atlı Şekeroğlu Z (2015) Investigation of cytotoxic and genotoxic effects of the antihistaminic drug, loratadine, on human lymphocytes. Drug Chem Toxicol 38:57–62CrossRefGoogle Scholar
  22. Laffon B, Pásaro E, Méndez J (2001) Genotoxic effects of styrene-7, 8-oxide in human white blood cells: comet assay in relation to the induction of sister-chromatid exchanges and micronuclei. Mutat Res 491:163–172CrossRefGoogle Scholar
  23. Levetan C (2007) Oral antidiabetic agents in type 2 diabetes. Curr Med Res Opin 23:945–952. CrossRefPubMedGoogle Scholar
  24. Ma J et al (2017) CMD-05, a novel promising clinical anti-diabetic drug candidate, in vivo and vitro studies. Sci Rep 7:46628CrossRefGoogle Scholar
  25. Maddika S et al (2007) Cell survival, cell death and cell cycle pathways are interconnected: implications for cancer therapy. Drug Resist Updates 10:13–29CrossRefGoogle Scholar
  26. Marble A (1934) Diabetes and cancer. N Engl J Med 211:339–349. CrossRefGoogle Scholar
  27. Mark H et al (1994) A practical cytogenetic protocol for in vitro cytotoxicity and genotoxicity testing. Ann Clin Lab Sci 24:387–395PubMedGoogle Scholar
  28. Mateuca R, Lombaert N, Aka PV, Decordier I, Kirsch-Volders M (2006) Chromosomal changes: induction, detection methods and applicability in human biomonitoring. Biochimie 88:1515–1531. CrossRefPubMedGoogle Scholar
  29. Matteucci E, Giampietro O (2011) Dipeptidyl peptidase-4 inhibition: linking chemical properties to clinical safety. Curr Med Chem 18:4753–4760CrossRefGoogle Scholar
  30. Moorhead PS, Nowell P, Mellman WJ, Battips DT, Hungerford D (1960) Chromosome preparations of leukocytes cultured from human peripheral blood. Exp Cell Res 20:613–616CrossRefGoogle Scholar
  31. OECD (2016a) Test No. 473: In vitro mammalian chromosomal aberration test. OECD Publishing, ParisCrossRefGoogle Scholar
  32. OECD (2016b) Test No 487: In vitro mammalian cell micronucleus test. OECD Publishing, ParisCrossRefGoogle Scholar
  33. Okutur SK (2015) İki Eski Dost: Diyabet ve Kanser Okmeydanı Tıp Dergisi 31:23–32. CrossRefGoogle Scholar
  34. Oz Gul O et al (2013) Comparative genotoxic and cytotoxic effects of the oral antidiabetic drugs sitagliptin, rosiglitazone, and pioglitazone in patients with type-2 diabetes: a cross-sectional, observational pilot study. Mutat Res 757:31–35. CrossRefPubMedGoogle Scholar
  35. Pinheiro MM, Stoppa CL, Valduga CJ, Okuyama CE, Gorjao R, Pereira RM, Diniz SN (2017) Sitagliptin inhibit human lymphocytes proliferation and Th1/Th17 differentiation in vitro. Eur J Pharm Sci 100:17–24. CrossRefPubMedGoogle Scholar
  36. Plosker GL (2014) Sitagliptin: a review of its use in patients with type 2 diabetes mellitus. Drugs 74:223–242. CrossRefPubMedGoogle Scholar
  37. Rojas E, Herrera LA, Sordo M, Gonsebatt ME, Montero R, Rodriguez R, Ostrosky-Wegman P (1993) Mitotic index and cell proliferation kinetics for identification of antineoplastic activity. Anticancer Drugs 4:637–640CrossRefGoogle Scholar
  38. Roshdy HM, Kassem SM (2013) Genetic effects of Januvia and Galvus alone or with metformin on pregnant female mice and their embryos. World Appl Sci J 25:1690–1698. CrossRefGoogle Scholar
  39. Scott LJ (2017) Sitagliptin: a review in type 2 diabetes. Drugs. 77:1–16CrossRefGoogle Scholar
  40. Sen S, He Y, Koya D, Kanasaki K (2014) Cancer biology in diabetes. J Diabetes Invest 5:251–264. CrossRefGoogle Scholar
  41. Spagnuolo PA, et al. (2013) Inhibition of intracellular dipeptidyl peptidases 8 and 9 enhances parthenolide’s anti-leukemic activity Leukemia 27:1236 CrossRefGoogle Scholar
  42. Speit G (1984) Considerations on the mechanism of differential Giemsa staining of BrdU-substituted chromosomes. Hum Genet 67:264–269CrossRefGoogle Scholar
  43. TEMD (2014) Türkiye Endokrinoloji ve Metabolizma Derneği, Diabetes Mellitus ve Komplikasyonlarının Tanı, Tedavi Ve İzlem Kılavuzu. TEMD Yayınları. Ankara. ISBN 978-605-4011-16-2 Google Scholar
  44. Tokur O, Aksoy A (2017) In vitro Sitotoksisite Testleri. Harran Üniversitesi Veteriner Fakültesi Dergisi 6(1):112–118CrossRefGoogle Scholar
  45. Tucker JD, Preston RJ (1996) Chromosome aberrations, micronuclei, aneuploidy, sister chromatid exchanges, and cancer risk assessment. Mutat Res/Rev Genet Toxicol 365:147–159CrossRefGoogle Scholar
  46. Warburg O (1956) On the origin of cancer. Science 123:309–314CrossRefGoogle Scholar
  47. Yang X, Ma R, So WY, Kong A, Xu G, Chan J (2012) Addressing different biases in analysing drug use on cancer risk in diabetes in non-clinical trial settings—what, why and how? Diabetes, Obes Metab 14:579–585CrossRefGoogle Scholar
  48. Yuzbasioglu D, Enguzel-Alperen C, Unal F (2018) Investigation of in vitro genotoxic effects of an anti-diabetic drug sitagliptin. Food Chem Toxicol 112:235–241. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Faculty of Art &Science, Department of Molecular Biology and GeneticsOrdu UniversityOrduTurkey
  2. 2.Faculty of Medicine, Department of Medical BiologyOndokuz Mayıs UniversitySamsunTurkey
  3. 3.Faculty of Medicine, Department of Internal Medicine, Division of Endocrinology and MetabolismOndokuz Mayıs UniversitySamsunTurkey

Personalised recommendations