Advertisement

MicroRNA-21-5p are involved in apoptosis and invasion of fibroblast-like synoviocytes through PTEN/PI3K/AKT signal

  • Xin Yan
  • Yake Liu
  • Xaoli Kong
  • Juan Ji
  • Hai Zhu
  • Zexu Zhang
  • Ting Fu
  • Junling Yang
  • Zhongyuan Zhang
  • Fan LiuEmail author
  • Zhifeng GuEmail author
Article
  • 37 Downloads

Abstract

The function of microRNA-21-5p (miR-21) in fibroblast-like synoviocytes in RA was still unclear. In our study, we used tumor necrosis factor alpha (TNFα) (10 ng/ml) to mimic RA-FLSs and we found that normal FLS stimulated with TNFα caused the increasing expression of miR-21, a disintegrin and metalloproteinase with thrombospondin motifs 5 and matrix metalloproteinase 3, which were in accord with RA-FLSs changes. Our data showed that miR-21 overexpression significantly increased cell invasion and decreased apoptosis in FLSs. Knockdown of miR-21 in FLSs causes the opposite result. However, miR-21 may not affect the proliferation of FLSs. Meanwhile, we showed that miR-21 activated the PI3K/AKT signaling pathway to participate in RA by inhibiting PTEN expression. Taken together, our results suggested that miR-21 may play a positive role in RA and may be a promising new therapeutic target for RA.

Keywords

Fibroblast-like synoviocytes MicroRNA-21-5p Apoptosis Invasion PTEN/PI3K/AKT signal 

Notes

Funding

The Natural Science Foundation of China under Grant (81671616).

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.

References

  1. Ammari M, Jorgensen C, Apparailly F (2013) Impact of microRNAs on the understanding and treatment of rheumatoid arthritis. Curr Opin Rheumatol 25:225–233.  https://doi.org/10.1097/BOR.0b013e32835d8385 CrossRefPubMedGoogle Scholar
  2. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233.  https://doi.org/10.1016/j.cell.2009.01.002 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bartok B, Firestein GS (2010) Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunol Rev 233:233–255.  https://doi.org/10.1111/j.0105-2896.2009.00859.x CrossRefPubMedPubMedCentralGoogle Scholar
  4. Blom AB, van Lent PL, Libregts S, Holthuysen AE, van der Kraan PM, van Rooijen N, van den Berg WB (2007) Crucial role of macrophages in matrix metalloproteinase-mediated cartilage destruction during experimental osteoarthritis: involvement of matrix metalloproteinase 3. Arthritis Rheum 56:147–157.  https://doi.org/10.1002/art.22337 CrossRefPubMedGoogle Scholar
  5. Bottini N, Firestein GS (2013) Duality of fibroblast-like synoviocytes in RA: passive responders and imprinted aggressors. Nat Rev Rheumatol 9:24–33.  https://doi.org/10.1038/nrrheum.2012.190 CrossRefPubMedGoogle Scholar
  6. Cappellesso R et al (2014) Programmed cell death 4 and microRNA 21 inverse expression is maintained in cells and exosomes from ovarian serous carcinoma effusions. Cancer Cytopathol 122:685–693.  https://doi.org/10.1002/cncy.21442 CrossRefPubMedGoogle Scholar
  7. Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65:6029–6033.  https://doi.org/10.1158/0008-5472.can-05-0137 CrossRefPubMedGoogle Scholar
  8. Chanyshev MD, Razumova YV, Ovchinnikov VY, Gulyaeva LF (2018) MiR-21 regulates the ACAT1 gene in MCF-7 cells. Life Sci 209:173–178.  https://doi.org/10.1016/j.lfs.2018.08.010 CrossRefPubMedGoogle Scholar
  9. Chatzikyriakidou A, Voulgari PV, Georgiou I, Drosos AA (2012) miRNAs and related polymorphisms in rheumatoid arthritis susceptibility. Autoimmun Rev 11:636–641.  https://doi.org/10.1016/j.autrev.2011.11.004 CrossRefPubMedGoogle Scholar
  10. Chen Y, Xian PF, Yang L, Wang SX (2016) MicroRNA-21 promotes proliferation of fibroblast-like synoviocytes through mediation of NF-κB nuclear translocation in a rat model of collagen-induced rheumatoid arthritis. Biomed Res Int 2016:9279078.  https://doi.org/10.1155/2016/9279078 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Choy E (2012) Understanding the dynamics: pathways involved in the pathogenesis of rheumatoid arthritis. Rheumatology (Oxford) 51(Suppl 5):v3–v11.  https://doi.org/10.1093/rheumatology/kes113 CrossRefGoogle Scholar
  12. Dharmapatni AA et al (2009) Elevated expression of caspase-3 inhibitors, survivin and xIAP correlates with low levels of apoptosis in active rheumatoid synovium. Arthritis Res Ther 11:R13.  https://doi.org/10.1186/ar2603 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Drynda A et al (2005) Gene transfer of tissue inhibitor of metalloproteinases-3 reverses the inhibitory effects of TNF-alpha on Fas-induced apoptosis in rheumatoid arthritis synovial fibroblasts. J Immunol 174:6524–6531CrossRefGoogle Scholar
  14. Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB (2005) Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov 4:988–1004.  https://doi.org/10.1038/nrd1902 CrossRefPubMedGoogle Scholar
  15. Huang M et al (2017) Indirubin inhibits the migration, invasion, and activation of fibroblast-like synoviocytes from rheumatoid arthritis patients. Inflamm Res 66:433–440.  https://doi.org/10.1007/s00011-017-1027-5 CrossRefPubMedGoogle Scholar
  16. Korb A, Pavenstadt H, Pap T (2009) Cell death in rheumatoid arthritis. Apoptosis 14:447–454.  https://doi.org/10.1007/s10495-009-0317-y CrossRefPubMedGoogle Scholar
  17. Luo Q, Cai Z, Tu J, Ling Y, Wang D, Cai Y (2018) Total flavonoids from Smilax glabra Roxb blocks epithelial-mesenchymal transition and inhibits renal interstitial fibrosis by targeting miR-21/PTEN signaling. J Cell Biochem.  https://doi.org/10.1002/jcb.27668 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Lv C, Hao Y, Tu G (2016) MicroRNA-21 promotes proliferation, invasion and suppresses apoptosis in human osteosarcoma line MG63 through PTEN/Akt pathway. Tumour Biol 37:9333–9342.  https://doi.org/10.1007/s13277-016-4807-6 CrossRefPubMedGoogle Scholar
  19. Maeda Y, Farina NH, Matzelle MM, Fanning PJ, Lian JB, Gravallese EM (2017) Synovium-derived MicroRNAs regulate bone pathways in rheumatoid arthritis. J Bone Miner Res 32:461–472.  https://doi.org/10.1002/jbmr.3005 CrossRefPubMedGoogle Scholar
  20. Malemud CJ (2015) The PI3K/Akt/PTEN/mTOR pathway: A fruitful target for inducing cell death in rheumatoid arthritis? Future Med Chem 7:1137–1147.  https://doi.org/10.4155/fmc.15.55 CrossRefPubMedGoogle Scholar
  21. Meisgen F et al (2012) MiR-21 is up-regulated in psoriasis and suppresses T cell apoptosis. Exp Dermatol 21:312–314.  https://doi.org/10.1111/j.1600-0625.2012.01462.x CrossRefPubMedGoogle Scholar
  22. Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T (2007) MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133:647–658.  https://doi.org/10.1053/j.gastro.2007.05.022 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Nakamura H et al (2018) Ectopic RASGRP2 (CalDAG-GEFI) expression in rheumatoid synovium contributes to the development of destructive arthritis. Ann Rheum Dis.  https://doi.org/10.1136/annrheumdis-2018-213588 CrossRefPubMedGoogle Scholar
  24. Pap T, Franz JK, Hummel KM, Jeisy E, Gay R, Gay S (2000) Activation of synovial fibroblasts in rheumatoid arthritis: lack of expression of the tumour suppressor PTEN at sites of invasive growth and destruction. Arthritis Res 2:59–64.  https://doi.org/10.1186/ar69 CrossRefPubMedGoogle Scholar
  25. Perlman H, Liu H, Georganas C, Koch AE, Shamiyeh E, Haines GK 3rd, Pope RM (2001) Differential expression pattern of the antiapoptotic proteins, Bcl-2 and FLIP, in experimental arthritis. Arthritis Rheum 44:2899–2908CrossRefGoogle Scholar
  26. Salmena L (2016) PTEN: history of a tumor suppressor methods. Mol Biol 1388:3–11.  https://doi.org/10.1007/978-1-4939-3299-3_1 CrossRefGoogle Scholar
  27. Scanzello CR, Goldring SR (2012) The role of synovitis in osteoarthritis pathogenesis. Bone 51:249–257.  https://doi.org/10.1016/j.bone.2012.02.012 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Shi L, Chen J, Yang J, Pan T, Zhang S, Wang Z (2010) MiR-21 protected human glioblastoma U87MG cells from chemotherapeutic drug temozolomide induced apoptosis by decreasing Bax/Bcl-2 ratio and caspase-3 activity. Brain Res 1352:255–264.  https://doi.org/10.1016/j.brainres.2010.07.009 CrossRefPubMedGoogle Scholar
  29. Shin JI et al (2018) Apoptotic and anti-inflammatory effects of Eupatorium japonicum thunb. in rheumatoid arthritis fibroblast-like synoviocytes. Biomed Res Int 2018:1383697.  https://doi.org/10.1155/2018/1383697 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Sims EK, Lakhter AJ, Anderson-Baucum E, Kono T, Tong X, Evans-Molina C (2017) MicroRNA 21 targets BCL2 mRNA to increase apoptosis in rat and human beta cells. Diabetologia 60:1057–1065.  https://doi.org/10.1007/s00125-017-4237-z CrossRefPubMedPubMedCentralGoogle Scholar
  31. Smigielska-Czepiel K et al (2013) Dual role of miR-21 in CD4 + T-cells: activation-induced miR-21 supports survival of memory T-cells and regulates CCR7 expression in naive T-cells. PLoS ONE 8:e76217.  https://doi.org/10.1371/journal.pone.0076217 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Smigielska-Czepiel K et al (2014) Comprehensive analysis of miRNA expression in T-cell subsets of rheumatoid arthritis patients reveals defined signatures of naive and memory Tregs. Genes Immun 15:115–125.  https://doi.org/10.1038/gene.2013.69 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Tang MW et al (2018) Class 3 semaphorins modulate the invasive capacity of rheumatoid arthritis fibroblast-like synoviocytes. Rheumatology (Oxford) 57:909–920.  https://doi.org/10.1093/rheumatology/kex511 CrossRefGoogle Scholar
  34. Venturutti L et al (2016) Stat3 regulates ErbB-2 expression and co-opts ErbB-2 nuclear function to induce miR-21 expression, PDCD4 downregulation and breast cancer metastasis. Oncogene 35:2208–2222.  https://doi.org/10.1038/onc.2015.281 CrossRefPubMedGoogle Scholar
  35. Wang H, Peng W, Ouyang X, Li W, Dai Y (2012) Circulating microRNAs as candidate biomarkers in patients with systemic lupus erythematosus. Transl Res 160:198–206.  https://doi.org/10.1016/j.trsl.2012.04.002 CrossRefPubMedGoogle Scholar
  36. Xiong G, Huang Z, Jiang H, Pan Z, Xie J, Wang S (2016) Inhibition of microRNA-21 decreases the invasiveness of fibroblast-like synoviocytes in rheumatoid arthritis via TGFbeta/Smads signaling pathway Iran. J Basic Med Sci 19:787–793Google Scholar
  37. Zhuang Y et al (2017) Tamarixinin A alleviates joint destruction of rheumatoid arthritis by blockade of MAPK and NF-kappaB activation. Front Pharmacol 8:538.  https://doi.org/10.3389/fphar.2017.00538 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Xin Yan
    • 1
  • Yake Liu
    • 1
  • Xaoli Kong
    • 3
  • Juan Ji
    • 3
  • Hai Zhu
    • 1
  • Zexu Zhang
    • 1
  • Ting Fu
    • 2
  • Junling Yang
    • 2
  • Zhongyuan Zhang
    • 3
  • Fan Liu
    • 1
    Email author
  • Zhifeng Gu
    • 3
    Email author
  1. 1.Department of OrthopaedicsAffiliated Hospital of Nantong UniversityNantongChina
  2. 2.Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityNantongChina
  3. 3.Department of RheumatologyAffiliated Hospital of Nantong UniversityNantongChina

Personalised recommendations