Advertisement

Angiopoietin-like protein 1 inhibits epithelial to mesenchymal transition in colorectal cancer cells via suppress Slug expression

  • Haijun Fan
  • Longping Huang
  • Xiaochen Zhuang
  • Fan Ai
  • Wei SunEmail author
Original Article
  • 25 Downloads

Abstract

The role of ANGPTL1 in cancer development is still little known, especially in colorectal cancer (CRC). We investigated the clinical significance of ANGPTL1 expression in CRC tissues and its potential role in the progression of epithelial to mesenchymal transition (EMT) in CRC cells, which has not been reported to our knowledge. ANGPTL1 expression in CRC tissues was much lower that than in paired adjacent normal tissues by IHC, WB and qRT-PCR assays. ANGPTL1 positive expression was negatively associated with tumor size (P = 0.034), T stage (P = 0.015), lymph nodes metastasis (P = 0.045) and TNM stage (P = 0.009) and poor prognosis of CRC patients (P = 0.003). In vitro, ANGPTL1 showed decreasing expression in CRC cell lines from primary tumor to ascites metastasis. Meanwhile, ANGPTL1 silencing enhanced EMT in HCT116 cells followed with the increase of Slug, Fibronectin and Vimentin, the decrease of E-cad, and the enhancement of EMT-like cell morphology and cell invasion and migration. Low ANGPTL1 expression is closely associated with multiple clinical significance and prognosis of CRC patients. ANGPTL1 inhibits EMT of CRC cells via inhibiting E-cad suppressor Slug expression.

Keywords

Angiopoietin-like protein 1 Epithelial to mesenchymal transition Colorectal cancer Slug 

Notes

Acknowledgements

We thank for the General Laboratory of the First Hospital of China Medical University for technical supports.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. Adhikary T, Brandt DT, Kaddatz K, Stockert J, Naruhn S, Meissner W et al (2013) Inverse PPARβ/δ agonists suppress oncogenic signaling to the ANGPTL4 gene and inhibit cancer cell invasion. Oncogene 32:5241–5252CrossRefGoogle Scholar
  2. Bhangu A, Wood G, Mirnezami A, Darzi A, Tekkis P, Goldin R (2012) Epithelial mesenchymal transition in colorectal cancer: seminal role in promoting disease progression and resistance to neoadjuvant therapy. Surg Oncol 21:316–323CrossRefGoogle Scholar
  3. Carbone C, Moccia T, Zhu C, Paradiso G, Budillon A, Chiao PJ et al (2011) Anti-VEGF treatment–resistant pancreatic cancers secrete proinflammatory factors that contribute to malignant progression by inducing an EMT cell phenotype. Clin Cancer Res 17:5822–5832CrossRefGoogle Scholar
  4. Carbone C, Piro G, Merz V, Simionato F, Santoro R, Zecchetto C et al (2018) Angiopoietin-like proteins in angiogenesis, inflammation and cancer. Int J Mol Sci 19:431CrossRefGoogle Scholar
  5. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ, He J (2016a) Cancer statistics in China, 2015. CA Cancer J Clin 66:115–132CrossRefGoogle Scholar
  6. Chen HA, Kuo TC, Tseng CF, Ma JT, Yang ST, Yen CJ et al (2016b) Angiopoietin-like protein 1 antagonizes MET receptor activity to repress sorafenib resistance and cancer stemness in hepatocellular carcinoma. Hepatology 64:1637–1651CrossRefGoogle Scholar
  7. Cui JG, Zhao Y, Sethi P, Li YY, Mahta A, Culicchia F et al (2010) Micro-RNA-128 (miRNA-128) down-regulation in glioblastoma targets ARP5 (ANGPTL6), Bmi-1 and E2F-3a, key regulators of brain cell proliferation. J. Neuro Oncol 98:297–304CrossRefGoogle Scholar
  8. Dhanabal M, Larochelle WJ, Jeffers M, Herrmann J, Rastelli L, McDonald WF et al (2002) Angioarrestin: an antiangiogenic protein with tumor-inhibiting properties. Cancer Res 62:3834–3841PubMedGoogle Scholar
  9. Fenouille N, Tichet M, Dufies M, Pottier A, Mogha A, Soo JK et al (2012) The epithelial-mesenchymal transition (EMT) regulatory factor SLUG (SNAI2) is a downstream target of SPARC and AKT in promoting melanoma cell invasion. PLoS ONE 7:e40378CrossRefGoogle Scholar
  10. Gaianigo N, Melisi D, Carbone C (2017) EMT and treatment resistance in pancreatic cancer. Cancers (Basel) 9:pii:E122Google Scholar
  11. Gardizi M, Kurschat C, Riese A, Hahn M, Krieg T, Mauch C et al (2012) A decreased ratio between serum levels of the antagonistic angiopoietins 1 and 2 indicates tumour progression of malignant melanoma. Arch Dermatol Res 304:397–400CrossRefGoogle Scholar
  12. Hato T, Tabata M, Oike Y (2008) The role of angiopoietin-like proteins in angiogenesis and metabolism. Trends Cardiovasc Med 18:6–14CrossRefGoogle Scholar
  13. Kersten S (2005) Regulation of lipid metabolism via angiopoietin-like proteins. Biochem Soc Trans 33:1059–1062CrossRefGoogle Scholar
  14. Kuo TC, Tan CT, Chang YW, Hong CC, Lee WJ, Chen MW et al (2013) Angiopoietin-like protein 1 suppresses SLUG to inhibit cancer cell motility. J Clin Invest 123:1082–1095CrossRefGoogle Scholar
  15. Liu Q, Sheng W, Dong M, Dong X, Dong Q, Li F (2015) Gli1 promotes transforming growth factor-beta1- and epidermal growth factor-induced epithelial to mesenchymal transition in pancreatic cancer cells. Surgery 158:211–224CrossRefGoogle Scholar
  16. Misiakos EP, Nikolaos P, Kouraklis G (2011) Current treatment for colorectal liver metastases. World J Gastroenterol 17:4067–4075CrossRefGoogle Scholar
  17. Naber HP, Drabsch Y, Snaar-Jagalska BE, ten Dijke P, van Laar T (2013) Snail and Slug, key regulators of TGF-β-induced EMT, are sufficient for the induction of single-cell invasion. Biochem Biophys Res Commun 435:58–63CrossRefGoogle Scholar
  18. Oike Y, Akao M, Kubota Y, Suda T (2005) Angiopoietin-like proteins: potential new targets for metabolic syndrome therapy. Trends Mol Med 11:473–479CrossRefGoogle Scholar
  19. Sheng W, Chen C, Dong M, Zhou J, Liu Q, Dong Q, Li F (2014) Overexpression of calreticulin contributes to the development and progression of pancreatic cancer. J Cell Physiol 229:887–897CrossRefGoogle Scholar
  20. Shih JY, Yang PC (2011) The EMT regulator slug and lung carcinogenesis. Carcinogenesis 32:1299–1304CrossRefGoogle Scholar
  21. Tabata M, Kadomatsu T, Fukuhara S, Miyata K, Ito Y, Endo M, Urano T et al (2009) Angiopoietin-like protein 2 promotes chronic adipose tissue inflammation and obesity-related systemic insulin resistance. Cell Metab 10:178–188CrossRefGoogle Scholar
  22. Teo Z, Sng MK, Chan JSK, Lim MMK, Li Y, Li L et al (2017) Elevation of adenylate energy charge by angiopoietin-like 4 enhances epithelial-mesenchymal transition by inducing 14-3-3γ expression. Oncogene 36:6408–6419CrossRefGoogle Scholar
  23. Vu T, Datta PK (2017) Regulation of EMT in colorectal cancer: a culprit in metastasis. Cancers (Basel) 9:pii:E171Google Scholar
  24. Wang L, Geng T, Guo X, Liu J, Zhang P, Yang D et al (2015) Co-expression of immunoglobulin-like transcript 4 and angiopoietin-like proteins in human non-small cell lung cancer. Mol Med Rep 11:2789–2796CrossRefGoogle Scholar
  25. Yan Q, Jiang L, Liu M, Yu D, Zhang Y, Li Y et al (2017) ANGPTL1 interacts with integrin α1β1 to suppress HCC angiogenesis and metastasis by inhibiting JAK2/STAT3 signaling. Cancer Res 77:5831–5845CrossRefGoogle Scholar
  26. Yu H, Zhang H, Li D, Xue H, Pan C, Zhao S et al (2011) Effects of angptl3 antisense oligodeoxynucleotides transfection on the cell growths and invasion of human hepatocellular carcinoma cells. Hepatogastroenterology 58:1742–1746CrossRefGoogle Scholar
  27. Zhang CC, Kaba M, Ge G, Xie K, Tong W, Hug C, Lodish HF (2006) Angiopoietin-like proteins stimulate ex vivo expansion of hematopoietic stem cells. Nat Med 12:240–245CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Haijun Fan
    • 1
  • Longping Huang
    • 1
  • Xiaochen Zhuang
    • 2
  • Fan Ai
    • 1
  • Wei Sun
    • 1
    Email author
  1. 1.Department of General SurgeryFourth People’s Hospital of ShenyangShenyangChina
  2. 2.Department of AnesthesiologyTenth People’s Hospital of ShenyangShenyangChina

Personalised recommendations