Skip to main content
Log in

Aligned ovine diaphragmatic myoblasts overexpressing human connexin-43 seeded on poly (l-lactic acid) scaffolds for potential use in cardiac regeneration

  • Original Article
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Diaphragmatic myoblasts (DMs) are precursors of type-1 muscle cells displaying high exhaustion threshold on account that they contract and relax 20 times/min over a lifespan, making them potentially useful in cardiac regeneration strategies. Besides, it has been shown that biomaterials for stem cell delivery improve cell retention and viability in the target organ. In the present study, we aimed at developing a novel approach based on the use of poly (L-lactic acid) (PLLA) scaffolds seeded with DMs overexpressing connexin-43 (cx43), a gap junction protein that promotes inter-cell connectivity. DMs isolated from ovine diaphragm biopsies were characterized by immunohistochemistry and ability to differentiate into myotubes (MTs) and transduced with a lentiviral vector encoding cx43. After confirming cx43 expression (RT-qPCR and Western blot) and its effect on inter-cell connectivity (fluorescence recovery after photobleaching), DMs were grown on fiber-aligned or random PLLA scaffolds. DMs were successfully isolated and characterized. Cx43 mRNA and protein were overexpressed and favored inter-cell connectivity. Alignment of the scaffold fibers not only aligned but also elongated the cells, increasing the contact surface between them. This novel approach is feasible and combines the advantages of bioresorbable scaffolds as delivery method and a cell type that on account of its features may be suitable for cardiac regeneration. Future studies on animal models of myocardial infarction are needed to establish its usefulness on scar reduction and cardiac function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbott A (2003) Cell culture: biology’s new dimension. Nature 424:870–872

    Article  CAS  Google Scholar 

  • Abraham MR, Henrikson CA, Tung L, Chang MG, Aon M, Xue T et al (2005) Antiarrhythmic engineering of skeletal myoblasts for cardiac transplantation. Circ Res 97:159–167

    Article  CAS  Google Scholar 

  • Baroffio A, Bochaton-Piallat ML, Gabbiani G, Bader CR (1995) Heterogeneity in the progeny of single human muscle satellite cells. Differentiation 59:259–268

    Article  CAS  Google Scholar 

  • Beachley V, Wen X (2010) Polymer nanofibrous structures: fabrication, biofunctionalization, and cell interactions. Prog Polym Sci 35:868–892

    Article  CAS  Google Scholar 

  • Beauchamp JR, Morgan JE, Pagel CN, Partridge TA (1999) Dynamics of myoblast transplantation reveal a discrete minority of precursors with stem cell–like properties as the myogenic source. J Cell Biol 144:1113–1122

    Article  CAS  Google Scholar 

  • Bonani W, Maniglio D, Motta A, Tan W, Migliaresi C (2011) Biohybrid nanofiber constructs with anisotropic biomechanical properties. J Biomed Mater Res Part B Appl Biomater 96:276–286

    Article  CAS  Google Scholar 

  • Borradori L, Sonnenberg A (1999) Structure and function of hemidesmosomes: more than simple adhesion complexes. J Invest Dermatol 112:411–418

    Article  CAS  Google Scholar 

  • Delmar M, Makita N (2012) Cardiac connexins, mutations and arrhythmias. Curr Opin Cardiol 27:236–241

    Article  Google Scholar 

  • Díaz-Gómez L, Ballarin FM, Abraham GA, Concheiro A, Alvarez-Lorenzo C (2015) Random and aligned PLLA: PRGF electrospun scaffolds for regenerative medicine. J Appl Polym Sci http://onlinelibrary.wiley.com/doi/10.1002/app.41372/abstract

  • Dib N, McCarthy P, Campbell A, Yeager M, Pagani FD, Wright S et al (2005) Feasibility and safety of autologous myoblast transplantation in patients with ischemic cardiomyopathy. Cell Transplant 14:11–19

    Article  Google Scholar 

  • Ercolani E, Del Gaudio C, Bianco A (2015) Vascular tissue engineering of small-diameter blood vessels: reviewing the electrospinning approach. J Tissue Eng Regen Med 9:861–888

    Article  CAS  Google Scholar 

  • Farnsworth NL, Hemmati A, Pozzoli M, Benninger RKP (2014) Fluorescence recovery after photobleaching reveals regulation and distribution of Cx36 gap junction coupling within mouse islets of langerhans. J Physiol 592:4431–4446

    Article  CAS  Google Scholar 

  • Fernandes S (2004) Myocardial tissue engineering: creating a muscle patch for a wounded heart. Ann NY Acad Sci 1015:312–319

    Article  Google Scholar 

  • Fernandes S, Amirault JC, Lande G, Nguyen JM, Forest V, Bignolais O et al (2006) Autologous myoblast transplantation after myocardial infarction increases the inducibility of ventricular arrhythmias. Cardiovasc Res 69:348–358

    Article  CAS  Google Scholar 

  • Fernandes S, van Rijen HV, Forest V, Evain S, Leblond AL, Mérot J et al (2009) Cardiac cell therapy: overexpression of connexin43 in skeletal myoblasts and prevention of ventricular arrhythmias. J Cell Mol Med 13:3703–3712

    Article  Google Scholar 

  • Fischer E, Sterzel H, Wegner G (1973) Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Kolloid-ZuZ Polymere 251:980–990

    Article  CAS  Google Scholar 

  • Greener ID, Sasano T, Wan X, Igarashi T, Strom M, Rosenbaum DS et al (2012) Connexin43 gene transfer reduces ventricular tachycardia susceptibility after myocardial infarction. J Am Coll Cardiol 60:1103–1110

    Article  Google Scholar 

  • Gupta B, Revagade N, Hilborn J (2007) Poly (lactic acid) fiber: an overview. Prog Polym Sci 32:455–482

    Article  CAS  Google Scholar 

  • He X, Xiao Q, Lu C, Wang Y, Zhang X, Zhao J et al (2014) Uniaxially aligned electrospun all-cellulose nanocomposite nanofibers reinforced with cellulose nanocrystals: scaffold for tissue engineering. Biomacromol 15:618–627

    Article  CAS  Google Scholar 

  • Jia L, Prabhakaran MP, Qin X, Ramakrishna S (2014) Guiding the orientation of smooth muscle cells on random and aligned polyurethane/collagen nanofibers. J Biomater Appl 29:364–377

    Article  Google Scholar 

  • Kai D, Jin G, Prabhakaran MP, Ramakrishna S (2013) Electrospun synthetic and natural nanofibers for regenerative medicine and stem cells. Biotechnol J 8:59–72

    Article  CAS  Google Scholar 

  • Kenar H, Kose GT, Hasirci V (2010) Design of a 3D aligned myocardial tissue construct from biodegradable polyesters. J Mater Sci Mater Med 21:989–997

    Article  CAS  Google Scholar 

  • Lee J, Yim YS, Ko SJ, Kim DG, Kim CH (2011) Gap junctions contribute to astrocytic resistance against zinc toxicity. Brain Res Bull 86:314–318

    Article  CAS  Google Scholar 

  • Liu Q, Tian S, Zhao C, Chen X, Lei I, Wang Z et al (2015) Porous nanofibrous poly(l-lactic acid) scaffolds supporting cardiovascular progenitor cells for cardiac tissue engineering. Acta Biomater 26:105–114

    Article  Google Scholar 

  • Lopes MS, Jardini AL, Filho RM (2012) Poly (Lactic Acid) production for tissue engineering applications. Procedia Eng 42:1402–1413

    Article  Google Scholar 

  • McClure MJ, Clark NM, Hyzy SL, Chalfant CE, Olivares-Navarrete R, Boyan BD, Schwartz Z (2016) Role of integrin α7β1 signaling in myoblast differentiation on aligned polydioxanone scaffolds. Acta Biomater 39:44–54

    Article  CAS  Google Scholar 

  • Menasché P, Hagège AA, Vilquin JT, Desnos M, Abergel E, Pouzet B et al (2003) Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J Am Coll Cardiol 41:1078–1083

    Article  Google Scholar 

  • Menasché P, Alfieri O, Janssens S, McKenna W, Reichenspurner H, Trinquart L et al (2008) The myoblast autologous grafting in ischemic cardiomyopathy (MAGIC) trial. First randomized placebo-controlled study of myoblast transplantation. Ciculation 117:1189–1200

    Article  Google Scholar 

  • Montini Ballarin F, Caracciolo PC, Blotta E, Ballarin VL, Abraham GA (2014) Optimization of poly(l-lactic acid)/segmented polyurethane electrospinning process for the production of bilayered small-diameter nanofibrous tubular structures. Mater Sci Eng C 42:489–499

    Article  CAS  Google Scholar 

  • Redshaw Z, McOrist S, Loughna P (2010) Muscle origin of porcine satellite cells affects in vitro differentiation potential. Cell Biochem Funct 28:403–411

    Article  CAS  Google Scholar 

  • Reneker DH, Yarin AL, Zussman E, Xu H (2007) Electrospinning of nanofibers from polymer solutions and melts. Adv Appl Mech 41:343–346

    Google Scholar 

  • Sepúlveda DE, Cabeza Meckert P, Locatelli P, Olea FD, Pérez NG, Pinilla OA et al (2016) Activated macrophages as a feeder layer for growth of resident cardiac progenitor cells. Cytotechnology 68:665–674

    Article  Google Scholar 

  • Shalumon KT, Deepthi S, Anupama MS, Nair SV, Jayakumar R, Chennazhi KP (2015) Fabrication of poly (l-lactic acid)/gelatin composite tubular scaffolds for vascular tissue engineering. Int J Biol Macromol 72:1048–1055

    Article  CAS  Google Scholar 

  • Siminiak T, Kalawski R, Fiszer D, Jerzykowska O, Rzeźniczak J, Rozwadowska N et al (2004) Autologous skeletal myoblast transplantation for the treatment of postinfarction myocardial injury: phase I clinical study with 12 months of follow-up. Am Heart J 148:531–537

    Article  Google Scholar 

  • Sutton MG, Sharpe N (2000) Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation 101:2981–2988

    Article  CAS  Google Scholar 

  • Suzuki K, Brand NJ, Allen S, Khan MA, Farrell AO, Murtuza B et al (2001) Overexpression of connexin 43 in skeletal myoblasts: relevance to cell transplantation to the heart. J Thorac Cardiovasc Surg 122:759–766

    Article  CAS  Google Scholar 

  • Vu DT, Martinez EC, Kofidis T (2012) Myocardial restoration: is it the cell or the architecture or both? Cardiol Res Pract 2012:240497. https://doi.org/10.1155/2012/240497

    Google Scholar 

  • Whited BM, Rylander MN (2014) The influence of electrospun scaffold topography on endothelial cell morphology, alignment, and adhesion in response to fluid flow. Biotechnol Bioeng 11:184–195

    Article  Google Scholar 

  • Yarin AL, Zussman E (2004) Upward needleless electrospinning of multiple nanofibers. Polymer 45:2977–2980

    Article  CAS  Google Scholar 

  • Zong X, Kim K, Fang D, Ran S, Hsiao BS, Chu B (2002) Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 43:4403–4412

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank veterinarians María Inés Besansón and Pedro Iguaín for anesthetic management and animal house assistants Juan C. Mansilla, Osvaldo Sosa, and Juan Ocampo for care of the animals. We also thank Julio Martínez and Fabián Gauna for technical help.

Funding

This work was supported by the National Agency for the Promotion of Science and Technology (ANPCyT) of Argentina (grants PICT 2011-1181 and 2012-0224) the René Barón Foundation of Argentina, the Florencio Fiorini Foundation of Argentina and the National Scientific and Technical Research Council (CONICET) of Argentina.

Author information

Authors and Affiliations

Authors

Contributions

CSG study design, data collection and/or assembly, data analysis and interpretation, manuscript writing, PL and MRB animal model preparation, LC and FDO data collection and interpretation, FMB and GAA provision of biomaterial, AO and EAA FRAP experiments, RAD and MP provision of lentiviral vector, AC study design, data analysis and interpretation, manuscript writing.

Corresponding author

Correspondence to Carlos Sebastián Giménez.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 6608 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giménez, C.S., Locatelli, P., Montini Ballarin, F. et al. Aligned ovine diaphragmatic myoblasts overexpressing human connexin-43 seeded on poly (l-lactic acid) scaffolds for potential use in cardiac regeneration. Cytotechnology 70, 651–664 (2018). https://doi.org/10.1007/s10616-017-0166-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-017-0166-4

Keywords

Navigation