Advertisement

Cytotechnology

, Volume 70, Issue 2, pp 651–664 | Cite as

Aligned ovine diaphragmatic myoblasts overexpressing human connexin-43 seeded on poly (l-lactic acid) scaffolds for potential use in cardiac regeneration

  • Carlos Sebastián Giménez
  • Paola Locatelli
  • Florencia Montini Ballarin
  • Alejandro Orlowski
  • Ricardo A. Dewey
  • Milagros Pena
  • Gustavo Abel Abraham
  • Ernesto Alejandro Aiello
  • María del Rosario Bauzá
  • Luis Cuniberti
  • Fernanda Daniela Olea
  • Alberto Crottogini
Original Article

Abstract

Diaphragmatic myoblasts (DMs) are precursors of type-1 muscle cells displaying high exhaustion threshold on account that they contract and relax 20 times/min over a lifespan, making them potentially useful in cardiac regeneration strategies. Besides, it has been shown that biomaterials for stem cell delivery improve cell retention and viability in the target organ. In the present study, we aimed at developing a novel approach based on the use of poly (L-lactic acid) (PLLA) scaffolds seeded with DMs overexpressing connexin-43 (cx43), a gap junction protein that promotes inter-cell connectivity. DMs isolated from ovine diaphragm biopsies were characterized by immunohistochemistry and ability to differentiate into myotubes (MTs) and transduced with a lentiviral vector encoding cx43. After confirming cx43 expression (RT-qPCR and Western blot) and its effect on inter-cell connectivity (fluorescence recovery after photobleaching), DMs were grown on fiber-aligned or random PLLA scaffolds. DMs were successfully isolated and characterized. Cx43 mRNA and protein were overexpressed and favored inter-cell connectivity. Alignment of the scaffold fibers not only aligned but also elongated the cells, increasing the contact surface between them. This novel approach is feasible and combines the advantages of bioresorbable scaffolds as delivery method and a cell type that on account of its features may be suitable for cardiac regeneration. Future studies on animal models of myocardial infarction are needed to establish its usefulness on scar reduction and cardiac function.

Keywords

Diaphragm Myoblasts Connexin-43 Absorbable implants Poly (L-lactic acid) Sheep Fluorescence recovery after photobleaching 

Notes

Acknowledgements

We thank veterinarians María Inés Besansón and Pedro Iguaín for anesthetic management and animal house assistants Juan C. Mansilla, Osvaldo Sosa, and Juan Ocampo for care of the animals. We also thank Julio Martínez and Fabián Gauna for technical help.

Author contributions

CSG study design, data collection and/or assembly, data analysis and interpretation, manuscript writing, PL and MRB animal model preparation, LC and FDO data collection and interpretation, FMB and GAA provision of biomaterial, AO and EAA FRAP experiments, RAD and MP provision of lentiviral vector, AC study design, data analysis and interpretation, manuscript writing.

Funding

This work was supported by the National Agency for the Promotion of Science and Technology (ANPCyT) of Argentina (grants PICT 2011-1181 and 2012-0224) the René Barón Foundation of Argentina, the Florencio Fiorini Foundation of Argentina and the National Scientific and Technical Research Council (CONICET) of Argentina.

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest to disclose.

Supplementary material

10616_2017_166_MOESM1_ESM.doc (6.5 mb)
Supplementary material 1 (DOC 6608 kb)

References

  1. Abbott A (2003) Cell culture: biology’s new dimension. Nature 424:870–872CrossRefGoogle Scholar
  2. Abraham MR, Henrikson CA, Tung L, Chang MG, Aon M, Xue T et al (2005) Antiarrhythmic engineering of skeletal myoblasts for cardiac transplantation. Circ Res 97:159–167CrossRefGoogle Scholar
  3. Baroffio A, Bochaton-Piallat ML, Gabbiani G, Bader CR (1995) Heterogeneity in the progeny of single human muscle satellite cells. Differentiation 59:259–268CrossRefGoogle Scholar
  4. Beachley V, Wen X (2010) Polymer nanofibrous structures: fabrication, biofunctionalization, and cell interactions. Prog Polym Sci 35:868–892CrossRefGoogle Scholar
  5. Beauchamp JR, Morgan JE, Pagel CN, Partridge TA (1999) Dynamics of myoblast transplantation reveal a discrete minority of precursors with stem cell–like properties as the myogenic source. J Cell Biol 144:1113–1122CrossRefGoogle Scholar
  6. Bonani W, Maniglio D, Motta A, Tan W, Migliaresi C (2011) Biohybrid nanofiber constructs with anisotropic biomechanical properties. J Biomed Mater Res Part B Appl Biomater 96:276–286CrossRefGoogle Scholar
  7. Borradori L, Sonnenberg A (1999) Structure and function of hemidesmosomes: more than simple adhesion complexes. J Invest Dermatol 112:411–418CrossRefGoogle Scholar
  8. Delmar M, Makita N (2012) Cardiac connexins, mutations and arrhythmias. Curr Opin Cardiol 27:236–241CrossRefGoogle Scholar
  9. Díaz-Gómez L, Ballarin FM, Abraham GA, Concheiro A, Alvarez-Lorenzo C (2015) Random and aligned PLLA: PRGF electrospun scaffolds for regenerative medicine. J Appl Polym Sci http://onlinelibrary.wiley.com/doi/10.1002/app.41372/abstract
  10. Dib N, McCarthy P, Campbell A, Yeager M, Pagani FD, Wright S et al (2005) Feasibility and safety of autologous myoblast transplantation in patients with ischemic cardiomyopathy. Cell Transplant 14:11–19CrossRefGoogle Scholar
  11. Ercolani E, Del Gaudio C, Bianco A (2015) Vascular tissue engineering of small-diameter blood vessels: reviewing the electrospinning approach. J Tissue Eng Regen Med 9:861–888CrossRefGoogle Scholar
  12. Farnsworth NL, Hemmati A, Pozzoli M, Benninger RKP (2014) Fluorescence recovery after photobleaching reveals regulation and distribution of Cx36 gap junction coupling within mouse islets of langerhans. J Physiol 592:4431–4446CrossRefGoogle Scholar
  13. Fernandes S (2004) Myocardial tissue engineering: creating a muscle patch for a wounded heart. Ann NY Acad Sci 1015:312–319CrossRefGoogle Scholar
  14. Fernandes S, Amirault JC, Lande G, Nguyen JM, Forest V, Bignolais O et al (2006) Autologous myoblast transplantation after myocardial infarction increases the inducibility of ventricular arrhythmias. Cardiovasc Res 69:348–358CrossRefGoogle Scholar
  15. Fernandes S, van Rijen HV, Forest V, Evain S, Leblond AL, Mérot J et al (2009) Cardiac cell therapy: overexpression of connexin43 in skeletal myoblasts and prevention of ventricular arrhythmias. J Cell Mol Med 13:3703–3712CrossRefGoogle Scholar
  16. Fischer E, Sterzel H, Wegner G (1973) Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Kolloid-ZuZ Polymere 251:980–990CrossRefGoogle Scholar
  17. Greener ID, Sasano T, Wan X, Igarashi T, Strom M, Rosenbaum DS et al (2012) Connexin43 gene transfer reduces ventricular tachycardia susceptibility after myocardial infarction. J Am Coll Cardiol 60:1103–1110CrossRefGoogle Scholar
  18. Gupta B, Revagade N, Hilborn J (2007) Poly (lactic acid) fiber: an overview. Prog Polym Sci 32:455–482CrossRefGoogle Scholar
  19. He X, Xiao Q, Lu C, Wang Y, Zhang X, Zhao J et al (2014) Uniaxially aligned electrospun all-cellulose nanocomposite nanofibers reinforced with cellulose nanocrystals: scaffold for tissue engineering. Biomacromol 15:618–627CrossRefGoogle Scholar
  20. Jia L, Prabhakaran MP, Qin X, Ramakrishna S (2014) Guiding the orientation of smooth muscle cells on random and aligned polyurethane/collagen nanofibers. J Biomater Appl 29:364–377CrossRefGoogle Scholar
  21. Kai D, Jin G, Prabhakaran MP, Ramakrishna S (2013) Electrospun synthetic and natural nanofibers for regenerative medicine and stem cells. Biotechnol J 8:59–72CrossRefGoogle Scholar
  22. Kenar H, Kose GT, Hasirci V (2010) Design of a 3D aligned myocardial tissue construct from biodegradable polyesters. J Mater Sci Mater Med 21:989–997CrossRefGoogle Scholar
  23. Lee J, Yim YS, Ko SJ, Kim DG, Kim CH (2011) Gap junctions contribute to astrocytic resistance against zinc toxicity. Brain Res Bull 86:314–318CrossRefGoogle Scholar
  24. Liu Q, Tian S, Zhao C, Chen X, Lei I, Wang Z et al (2015) Porous nanofibrous poly(l-lactic acid) scaffolds supporting cardiovascular progenitor cells for cardiac tissue engineering. Acta Biomater 26:105–114CrossRefGoogle Scholar
  25. Lopes MS, Jardini AL, Filho RM (2012) Poly (Lactic Acid) production for tissue engineering applications. Procedia Eng 42:1402–1413CrossRefGoogle Scholar
  26. McClure MJ, Clark NM, Hyzy SL, Chalfant CE, Olivares-Navarrete R, Boyan BD, Schwartz Z (2016) Role of integrin α7β1 signaling in myoblast differentiation on aligned polydioxanone scaffolds. Acta Biomater 39:44–54CrossRefGoogle Scholar
  27. Menasché P, Hagège AA, Vilquin JT, Desnos M, Abergel E, Pouzet B et al (2003) Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J Am Coll Cardiol 41:1078–1083CrossRefGoogle Scholar
  28. Menasché P, Alfieri O, Janssens S, McKenna W, Reichenspurner H, Trinquart L et al (2008) The myoblast autologous grafting in ischemic cardiomyopathy (MAGIC) trial. First randomized placebo-controlled study of myoblast transplantation. Ciculation 117:1189–1200CrossRefGoogle Scholar
  29. Montini Ballarin F, Caracciolo PC, Blotta E, Ballarin VL, Abraham GA (2014) Optimization of poly(l-lactic acid)/segmented polyurethane electrospinning process for the production of bilayered small-diameter nanofibrous tubular structures. Mater Sci Eng C 42:489–499CrossRefGoogle Scholar
  30. Redshaw Z, McOrist S, Loughna P (2010) Muscle origin of porcine satellite cells affects in vitro differentiation potential. Cell Biochem Funct 28:403–411CrossRefGoogle Scholar
  31. Reneker DH, Yarin AL, Zussman E, Xu H (2007) Electrospinning of nanofibers from polymer solutions and melts. Adv Appl Mech 41:343–346Google Scholar
  32. Sepúlveda DE, Cabeza Meckert P, Locatelli P, Olea FD, Pérez NG, Pinilla OA et al (2016) Activated macrophages as a feeder layer for growth of resident cardiac progenitor cells. Cytotechnology 68:665–674CrossRefGoogle Scholar
  33. Shalumon KT, Deepthi S, Anupama MS, Nair SV, Jayakumar R, Chennazhi KP (2015) Fabrication of poly (l-lactic acid)/gelatin composite tubular scaffolds for vascular tissue engineering. Int J Biol Macromol 72:1048–1055CrossRefGoogle Scholar
  34. Siminiak T, Kalawski R, Fiszer D, Jerzykowska O, Rzeźniczak J, Rozwadowska N et al (2004) Autologous skeletal myoblast transplantation for the treatment of postinfarction myocardial injury: phase I clinical study with 12 months of follow-up. Am Heart J 148:531–537CrossRefGoogle Scholar
  35. Sutton MG, Sharpe N (2000) Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation 101:2981–2988CrossRefGoogle Scholar
  36. Suzuki K, Brand NJ, Allen S, Khan MA, Farrell AO, Murtuza B et al (2001) Overexpression of connexin 43 in skeletal myoblasts: relevance to cell transplantation to the heart. J Thorac Cardiovasc Surg 122:759–766CrossRefGoogle Scholar
  37. Vu DT, Martinez EC, Kofidis T (2012) Myocardial restoration: is it the cell or the architecture or both? Cardiol Res Pract 2012:240497.  https://doi.org/10.1155/2012/240497 Google Scholar
  38. Whited BM, Rylander MN (2014) The influence of electrospun scaffold topography on endothelial cell morphology, alignment, and adhesion in response to fluid flow. Biotechnol Bioeng 11:184–195CrossRefGoogle Scholar
  39. Yarin AL, Zussman E (2004) Upward needleless electrospinning of multiple nanofibers. Polymer 45:2977–2980CrossRefGoogle Scholar
  40. Zong X, Kim K, Fang D, Ran S, Hsiao BS, Chu B (2002) Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 43:4403–4412CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Carlos Sebastián Giménez
    • 1
  • Paola Locatelli
    • 1
  • Florencia Montini Ballarin
    • 2
  • Alejandro Orlowski
    • 3
  • Ricardo A. Dewey
    • 4
  • Milagros Pena
    • 4
  • Gustavo Abel Abraham
    • 2
  • Ernesto Alejandro Aiello
    • 4
  • María del Rosario Bauzá
    • 1
  • Luis Cuniberti
    • 1
  • Fernanda Daniela Olea
    • 1
  • Alberto Crottogini
    • 1
  1. 1.Instituto de Medicina Traslacional, Transplante y Bioingeniería (IMETTYB)Universidad Favaloro-CONICETBuenos AiresArgentina
  2. 2.Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA)Universidad Nacional de Mar del Plata-CONICETMar del PlataArgentina
  3. 3.Centro de Investigaciones Cardiológicas (CIC)Universidad Nacional de La Plata-CONICETLa PlataArgentina
  4. 4.Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH)Universidad Nacional de San Martín-CONICETChascomúsArgentina

Personalised recommendations