Advertisement

Cytotechnology

, Volume 70, Issue 3, pp 899–912 | Cite as

A methoxyflavanone derivative from the Asian medicinal herb (Perilla frutescens) induces p53-mediated G2/M cell cycle arrest and apoptosis in A549 human lung adenocarcinoma

  • Amer Ali Abd El-Hafeez
  • Takashi Fujimura
  • Rikiya Kamei
  • Noriko Hirakawa
  • Kenji Baba
  • Kazuhisa Ono
  • Seiji Kawamoto
Article

Abstract

Perilla frutescens is an Asian dietary herb consumed as an essential seasoning in Japanese cuisine as well as used for a Chinese medicine. Here, we report that a newly found methoxyflavanone derivative from P. frutescens (Perilla-derived methoxyflavanone, PDMF; 8-hydroxy-5,7-dimethoxyflavanone) shows carcinostatic activity on human lung adenocarcinoma, A549. We found that treatment with PDMF significantly inhibited cell proliferation and decreased viability through induction of G2/M cell cycle arrest and apoptosis. The PDMF stimulation induces phosphorylation of tumor suppressor p53 on Ser15, and increases its protein amount in conjunction with up-regulation of downstream cyclin-dependent kinase inhibitor p21Cip1/Waf1 and proapoptotic caspases, caspase-9 and caspase-3. We also found that small interfering RNA knockdown of p53 completely abolished the PDMF-induced G2/M cell cycle arrest, and substantially abrogated its proapoptotic potency. These results suggest that PDMF represents a useful tumor-preventive phytochemical that triggers p53-driven G2/M cell cycle arrest and apoptosis.

Keywords

Apoptosis Flavanone G2/M cell cycle arrest Lung cancer p53 Perilla frutescens 

Notes

Acknowledgements

This work was financially supported by the Mishima Food Co., Ltd. N. Hirakawa and K. Baba are employees of the Mishima Food Co., Ltd. Abd El-Hafeez A. A. was supported by the Ministry of Education, Culture, Sports, Science, and Technology, MEXT, Japan.

Compliance with ethical standards

Conflict of interest

None of other authors have conflict of interest.

References

  1. Agarwal ML, Agarwal A, Taylor WR, Chernova O, Sharma Y, Stark GR (1998) A p53-dependent S-phase checkpoint helps to protect cells from DNA damage in response to starvation for pyrimidine nucleotides. Proc Natl Acad Sci USA 95:14775–14780CrossRefGoogle Scholar
  2. Amaral JD, Xavier JM, Steer CJ, Rodrigues CM (2010) The role of p53 in apoptosis. Discov Med 9:145–152Google Scholar
  3. Arul D, Subramanian P (2013) Naringenin (citrus flavonone) induces growth inhibition, cell cycle arrest and apoptosis in human hepatocellular carcinoma cells. Pathol Oncol Res 19:763–770CrossRefGoogle Scholar
  4. Ashkenazi A, Dixit VM (1999) Apoptosis control by death and decoy receptors. Curr Opin Cell Biol 11:255–260CrossRefGoogle Scholar
  5. Ayob Z, Mohd Bohari SP, Abd Samad A, Jamil S (2014) Cytotoxic activities against breast cancer cells of local justicia gendarussa crude extracts. Evid Based Complement Alternat Med 2014:732980CrossRefGoogle Scholar
  6. Azzoli CG, Baker S Jr, Temin S, Pao W, Aliff T, Brahmer J, Johnson DH, Laskin JL, Masters G, Milton D, Nordquist L, Pfister DG, Piantadosi S, Schiller JH, Smith R, Smith TJ, Strawn JR, Trent D, Giaccone G (2009) American society of clinical oncology clinical practice guideline update on chemotherapy for stage IV non-small-cell lung cancer. J Clin Oncol 27:6251–6266CrossRefGoogle Scholar
  7. Banno N, Akihisa T, Tokuda H, Yasukawa K, Higashihara H, Ukiya M, Watanabe K, Kimura Y, Hasegawa JI, Nishino H (2004) Triterpene acids from the leaves of Perilla frutescens and their anti-inflammatory and antitumor-promoting effects. Biosci Biotechnol Biochem 68:85–90CrossRefGoogle Scholar
  8. Chen JC, Lu KW, Tsai ML, Hsu SC, Kuo CL, Yang JS, Hsia TC, Yu CS, Chou ST, Kao MC, Chung JG (2009) Gypenosides induced G0/G1 arrest via CHk2 and apoptosis through endoplasmic reticulum stress and mitochondria-dependent pathways in human tongue cancer SCC-4 cells. Oral Oncol 45:273–283CrossRefGoogle Scholar
  9. Cohen GM (1997) Caspases: the executioners of apoptosis. Biochem J 326:1–16CrossRefGoogle Scholar
  10. El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825CrossRefGoogle Scholar
  11. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516CrossRefGoogle Scholar
  12. Flatt PM, Tang LJ, Scatena CD, Szak ST, Pietenpol JA (2000) p53 regulation of G2 checkpoint is retinoblastoma protein dependent. Mol Cell Biol 20:4210–4223CrossRefGoogle Scholar
  13. Habtemariam S, Dagne E (2010) Comparative antioxidant, prooxidant and cytotoxic activity of sigmoidin A and eriodictyol. Planta Med 76:589–594CrossRefGoogle Scholar
  14. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776CrossRefGoogle Scholar
  15. Kamei R, Fujimura T, Matsuda M, Kakihara K, Hirakawa N, Baba K, Ono K, Arakawa K, Kawamoto S (2017) A flavanone derivative from the Asian medicinal herb (Perilla frutescens) potently suppresses IgE-mediated immediate hypersensitivity reactions. Biochem Biophys Res Commun 483:674–679CrossRefGoogle Scholar
  16. Kim MJ, Kim HK (2009) Perilla leaf extract ameliorates obesity and dyslipidemia induced by high-fat diet. Phytother Res 23:1685–1690CrossRefGoogle Scholar
  17. Kim MK, Lee HS, Kim EJ, Won NH, Chi YM, Kim BC, Lee KW (2007) Protective effect of aqueous extract of Perilla frutescens on tert-butyl hydroperoxide-induced oxidative hepatotoxicity in rats. Food Chem Toxicol 45:1738–1744CrossRefGoogle Scholar
  18. Kim SH, Kim SH, Lee SC, Song YS (2009) Involvement of both extrinsic and intrinsic apoptotic pathways in apoptosis induced by genistein in human cervical cancer cells. Ann N Y Acad Sci 1171:196–201CrossRefGoogle Scholar
  19. Kwak Y, Ju J (2015) Inhibitory activities of Perilla frutescens britton leaf extract against the growth, migration, and adhesion of human cancer cells. Nutr Res Pract 9:11–16CrossRefGoogle Scholar
  20. Kwak CS, Yeo EJ, Moon SC, Kim YW, Ahn HJ, Park SC (2009) Perilla leaf, Perilla frutescens, induces apoptosis and G1 phase arrest in human leukemia HL-60 cells through the combinations of death receptor-mediated, mitochondrial, and endoplasmic reticulum stress-induced pathways. J Med Food 12:508–517CrossRefGoogle Scholar
  21. Lehman TA, Bennett WP, Metcalf RA, Welsh JA, Ecker J, Modali RV, Ullrich S, Romano JW, Appella E, Testa JR, Gerwin BA, Harris C (1991) p53 mutations, ras mutations, and p53-heat shock 70 protein complexes in human lung carcinoma cell lines. Cancer Res 51:4090–4096Google Scholar
  22. Li M, Zhang F, Wang X, Wu X, Zhang B, Zhang N, Wu W, Wang Z, Weng H, Liu S, Gao G, Mu J, Shu Y, Bao R, Cao Y, Lu J, Gu J, Zhu J, Liu Y (2015) Magnolol inhibits growth of gallbladder cancer cells through the p53 pathway. Cancer Sci 106:1341–1350CrossRefGoogle Scholar
  23. Lin CS, Kuo CL, Wang JP, Cheng JS, Huang ZW, Chen CF (2007) Growth inhibitory and apoptosis inducing effect of Perilla frutescens extract on human hepatoma HepG2 cells. J Ethnopharmacol 112:557–567CrossRefGoogle Scholar
  24. Ma GF, Chen SY, Sun ZR, Miao Q, Liu YM, Zeng XQ, Luo TC, Ma LL, Lian JJ, Song DL (2013) FoxP3 inhibits proliferation and induces apoptosis of gastric cancer cells by activating the apoptotic signaling pathway. Biochem Biophys Res Commun 430:804–809CrossRefGoogle Scholar
  25. Makino T, Furuta Y, Fujii H, Nakagawa T, Wakushima H, Saito K, Kano Y (2001) Effect of oral treatment of Perilla frutescens and its constituents on type-I allergy in mice. Biol Pharm Bull 24:1206–1209CrossRefGoogle Scholar
  26. Makino T, Furuta Y, Wakushima H, Fujii H, Saito K, Kano Y (2003) Anti-allergic effect of Perilla frutescens and its active constituents. Phytother Res 17:240–243CrossRefGoogle Scholar
  27. Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129:1261–1274CrossRefGoogle Scholar
  28. Meng LH, Lozano YF, Gaydou EM, Li B (2009) Antioxidant zctivities of polyphenols extracted from Perilla frutescens varieties. Molecules 14:133–140CrossRefGoogle Scholar
  29. Ogawara Y, Kishishita S, Obata T, Isazawa Y, Suzuki T, Tanaka K, Masuyama N, Gotoh Y (2002) Akt enhances Mdm2-mediated ubiquitination and degradation of p53. J Biol Chem 277:21843–21850CrossRefGoogle Scholar
  30. Osakabe N, Yasuda A, Natsume M, Sanbongi C, Kato Y, Osawa T, Yoshikawa T (2002) Rosmarinic acid, a major polyphenolic component of Perilla frutescens, reduces lipopolysaccharide (LPS)-induced liver injury in D-Galactosamine (D-GalN)-sensitized mice. Free Radic Biol Med 33:798–806CrossRefGoogle Scholar
  31. Ridge CA, McErlean AM, Ginsberg MS (2013) Epidemiology of lung cancer. Semin Intervent Radiol 30:93–98CrossRefGoogle Scholar
  32. Riedl SJ, Salvesen GS (2007) The apoptosome: signaling platform of cell death. Nat Rev Mol Cell Biol 8:405–413CrossRefGoogle Scholar
  33. Sandler AB, Nemunaitis J, Denham C, von Pawel J, Cormier Y, Gatzemeier U, Mattson K, Manegold C (2000) Phase III trial of gemcitabine plus cisplatin versus cisplatin alone in patients with locally advanced or metastatic non-small-cell lung cancer. J Clin Oncol 18:122–130CrossRefGoogle Scholar
  34. Schuler M, Bossy-Wetzel E, Goldstein JC, Fitzgerald P, Green DR (2000) p53 induces apoptosis by caspase activation through mitochondrial cytochrome c release. J Biol Chem 275:7337–7342CrossRefGoogle Scholar
  35. Siliciano JD, Canman CE, Taya Y, Sakaguchi K, Appella E, Kastan MB (1997) DNA damage induces phosphorylation of the amino terminus of p53. Genes Dev 11:3471–3481CrossRefGoogle Scholar
  36. Socinski MA (2014) Update on taxanes in the first-line treatment of advanced non-small-cell lung cancer. Curr Oncol 21:e691–e703CrossRefGoogle Scholar
  37. Srinivasan S, Koduru S, Kumar R, Venguswamy G, Kyprianou N, Damodaran C (2009) Diosgenin targets Akt-mediated prosurvival signaling in human breast cancer cells. Int J Cancer 125:961–967CrossRefGoogle Scholar
  38. Takano H, Osakabe N, Sanbongi C, Yanagisawa R, Inoue KI, Yasuda A, Natsume M, Baba S, Ichiishi EI, Yoshikawa T (2004) Extract of Perilla frutescens enriched for rosmarinic acid, a polyphenolic phytochemical, inhibits seasonal allergic rhinoconjunctivitis in humans. Exp Biol Med 229:247–254CrossRefGoogle Scholar
  39. Tibbetts RS, Brumbaugh KM, Williams JM, Sarkaria JN, Cliby WA, Shieh SY, Taya Y, Prives C, Abraham RT (1999) A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev 13:152–157CrossRefGoogle Scholar
  40. Ueda H, Yamazaki M (1997) Inhibition of tumor necrosis factor-alpha production by orally administering a Perilla leaf extract. Biosci Biotechnol Biochem 61:1292–1295CrossRefGoogle Scholar
  41. Ueda H, Yamazaki M (2001) Anti-inflammatory and anti-allergic actions by oral administration of a Perilla leaf extract in mice. Biosci Biotechnol Biochem 65:1673–1675CrossRefGoogle Scholar
  42. Ueda H, Yamazaki C, Yamazaki M (2002) Luteolin as an anti-inflammatory and anti-allergic constituent of Perilla frutescens. Biol Pharm Bull 25:1197–1202CrossRefGoogle Scholar
  43. Ueda H, Yamazaki C, Yamazaki M (2003) Inhibitory effect of Perilla leaf extract and luteolin on mouse skin tumor promotion. Biol Pharm Bull 26:560–563CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Hiroshima Research Center for Healthy Aging (HiHA), Department of Molecular Biotechnology, Graduate School of Advanced Sciences of MatterHiroshima UniversityHigashi-HiroshimaJapan
  2. 2.Mishima Food Co. LtdHiroshimaJapan
  3. 3.Department of Food Sciences and Biotechnology, Faculty of Life SciencesHiroshima Institute of TechnologyHiroshimaJapan

Personalised recommendations