, Volume 69, Issue 2, pp 371–389 | Cite as

Optimized expression of the antimicrobial protein Gloverin from Galleria mellonella using stably transformed Drosophila melanogaster S2 cells

  • Jan Zitzmann
  • Tobias Weidner
  • Peter Czermak
Original Article


Antimicrobial proteins and peptides (AMPs) are valuable as leads in the pharmaceutical industry for the development of novel anti-infective drugs. Here we describe the efficient heterologous expression and basic characterization of a Gloverin-family AMP derived from the greater wax moth Galleria mellonella. Highly productive single-cell clones prepared by limiting dilution achieved a 100% increase in productivity compared to the original polyclonal Drosophila melanogaster S2 cell line. Comprehensive screening for suitable expression conditions using statistical experimental designs revealed that optimal induction was achieved using 600 µM CuSO4 at the mid-exponential growth phase. Under these conditions, 25 mg/L of the AMP was expressed at the 1-L bioreactor scale, with optimal induction and harvest times ensured by dielectric spectroscopy and the online measurement of optical density. Gloverin was purified from the supernatant by immobilized metal ion affinity chromatography followed by dialysis. In growth assays, the purified protein showed specific antimicrobial activity against two different strains of Escherichia coli.


Antimicrobial protein Galleria mellonella Gloverin Stably transformed D. melanogaster S2 cells Recombinant protein expression Online process monitoring Process optimization 



We would like to thank the Hessen State Ministry of Higher Education, Research and the Arts (Grant No. LOEWE AZ: III L5-518/19.004) for financial support within the Hessen initiative for scientific and economic excellence (LOEWE-Program). The authors acknowledge Dr. Richard M. Twyman for editing the paper.

Author contributions

JZ conceived, designed and conducted the experiments, and wrote the manuscript; TW helped to draft and to revise the manuscript; PC helped to draft and to revise the manuscript, and supervised the research; All authors have given their approval for this final version of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest. The founding sponsors had no role in the design of the study; in the collection, analysis, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.


  1. Akhnoukh R, Kretzmer G, Schügerl K (1996) On-line monitoring and control of the cultivation of Spodoptera frugiperda Sf9 insect cells and β-galactosidase production by Autographa californica virus vector. Enzyme Microb Technol 18:220–228. doi: 10.1016/0141-0229(95)00093-3 CrossRefGoogle Scholar
  2. Altincicek B, Linder M, Linder D et al (2007) Microbial metalloproteinases mediate sensing of invading pathogens and activate innate immune responses in the lepidopteran model host Galleria mellonella. Infect Immun 75:175–183. doi: 10.1128/IAI.01385-06 CrossRefGoogle Scholar
  3. Aoki W, Kuroda K, Ueda M (2012) Next generation of antimicrobial peptides as molecular targeted medicines. J Biosci Bioeng 114:365–370. doi: 10.1016/j.jbiosc.2012.05.001 CrossRefGoogle Scholar
  4. Axén A, Carlsson A, Engström Å, Bennich H (1997) Gloverin, an antibacterial protein from the immune hemolymph of Hyalophora pupae. Eur J Biochem 247:614–619. doi: 10.1111/j.1432-1033.1997.00614.x CrossRefGoogle Scholar
  5. Bédard C, Jolicoeur M, Jardin B et al (1994) Insect cell density in bioreactor cultures can be estimated from on-line measurements of optical density. Biotechnol Tech 8:605–610. doi: 10.1007/BF00241682 CrossRefGoogle Scholar
  6. Bernard AR, Kost TA, Overton L, Cavegn C, Young J, Bertrand M et al (1994) Recombinant protein expression in a Drosophila cell line: comparison with the baculovirus system. Cytotechnology 15:139–144CrossRefGoogle Scholar
  7. Brown SE, Howard A, Kasprzak AB et al (2009) A peptidomics study reveals the impressive antimicrobial peptide arsenal of the wax moth Galleria mellonella. Insect Biochem Mol Biol 39:792–800. doi: 10.1016/j.ibmb.2009.09.004 CrossRefGoogle Scholar
  8. Bunch TA, Grinblat Y, Goldstein LS (1988) Characterization and use of the Drosophila metallothionein promoter in cultured Drosophila melanogaster cells. Nucleic Acids Res 16:1043–1061CrossRefGoogle Scholar
  9. Carballar-Lejarazú R, Rodríguez MH, de la Cruz Hernández-Hernández F et al (2008) Recombinant scorpine: a multifunctional antimicrobial peptide with activity against different pathogens. Cell Mol Life Sci 65:3081–3092. doi: 10.1007/s00018-008-8250-8 CrossRefGoogle Scholar
  10. Chang KH, Park JH, Lee YH, Kim JH, Chun HO, Kim JH et al (2002) Dimethylsulfoxide and sodium butyrate enhance the production of recombinant cyclooxygenase 2 in stably transformed Drosophila melanogaster S2 cells. Biotechnol Lett 24:1353–1359. doi: 10.1023/A:1019841829667 CrossRefGoogle Scholar
  11. Chart H, Smith HR, La Ragione RM, Woodward MJ (2000) An investigation into the pathogenic properties of Escherichia coli strains BLR, BL21, DH5α and EQ1. J Appl Microbiol 89:1048–1058. doi: 10.1046/j.1365-2672.2000.01211.x CrossRefGoogle Scholar
  12. Chen T, Sun H, Lu J et al (2002) Histone acetylation is involved in hsp70 gene transcription regulation in Drosophila melanogaster. Arch Biochem Biophys 408:171–176CrossRefGoogle Scholar
  13. Cherbas L, Cherbas P (2007) Transformation of Drosophila cell lines. In: Murhammer D (ed) Baculovirus and insect cell expression protocols. Humana Press, New York, pp 317–340Google Scholar
  14. Chiou M-J, Chen L-K, Peng K-C et al (2009) Stable expression in a Chinese hamster ovary (CHO) cell line of bioactive recombinant chelonianin, which plays an important role in protecting fish against pathogenic infection. Dev Comp Immunol 33:117–126. doi: 10.1016/j.dci.2008.07.012 CrossRefGoogle Scholar
  15. Cho HS, Kim YK, Cha HJ (2004) Expression of double foreign protein types following recombinant baculovirus infection of stably transfected Drosophila S2 cells. Enzyme Microb Technol 35:525–531CrossRefGoogle Scholar
  16. Chung HY, Hwang-Bo J, Kim S-K, Baek NI, Lee YH, Chung IS et al (2011) Functional expression of Arabidopsis thaliana sterol glycosyltransferase from stably transformed Drosophila melanogaster S2 cells. Biotechnol Bioprocess Eng 16:801–807CrossRefGoogle Scholar
  17. de Jongh WA, Salgueiro S, Dyring C (2013) The use of Drosophila S2 cells in R&D and bioprocessing. Pharm Bioprocess 1:197–213. doi: 10.4155/pbp.13.18 CrossRefGoogle Scholar
  18. Deml L, Wolf H, Wagner R (1999) High level expression of hepatitis B virus surface antigen in stably transfected Drosophila schneider-2 cells. J Virol Methods 79:191–203CrossRefGoogle Scholar
  19. Dorner AJ, Wasley LC, Kaufman RJ (1989) Increased synthesis of secreted proteins induces expression of glucose-regulated proteins in butyrate-treated Chinese hamster ovary cells. J Biol Chem 264:20602–20607Google Scholar
  20. Druzinec D, Salzig D, Brix A et al (2013) Optimization of insect cell based protein production processes—online monitoring, expression systems, scale up. Adv Biochem Eng Biotechnol 136:65–100. doi: 10.1007/10_2013_205 Google Scholar
  21. Druzinec D, Weiss K, Elseberg C et al (2014) Process analytical technology (PAT) in insect and mammalian cell culture processes: dielectric spectroscopy and focused beam reflectance measurement (FBRM). In: Pörtner R (ed) Animal cell biotechnology. Humana Press, New York, pp 313–341CrossRefGoogle Scholar
  22. Dubreuil RR, Grushko T (1999) Neuroglian and DE-cadherin activate independent cytoskeleton assembly pathways in Drosophila S2 cells. Biochem Biophys Res Commun 265:372–375CrossRefGoogle Scholar
  23. Dubreuil RR, MacVicar G, Dissanayake S, Liu C, Homer D, Hortsch M (1996) Neuroglian-mediated cell adhesion induces assembly of the membrane skeleton at cell contact sites. J Cell Biol 133:647–655CrossRefGoogle Scholar
  24. Escoubas P, Bernard C, Lambeau G et al (2003) Recombinant production and solution structure of PcTx1, the specific peptide inhibitor of ASIC1a proton-gated cation channels. Protein Sci Publ Protein Soc 12:1332–1343CrossRefGoogle Scholar
  25. Friry C, Feliciangeli S, Richard F, Kitabgi P, Rovere C (2002) Production of recombinant large proneurotensin/neuromedin N-derived peptides and characterization of their binding and biological activity. Biochem Biophys Res Commun 290:1161–1168CrossRefGoogle Scholar
  26. Gnoth S, Jenzsch M, Simutis R, Lübbert A (2007) Process Analytical Technology (PAT): batch-to-batch reproducibility of fermentation processes by robust process operational design and control. J Biotechnol 132:180–186. doi: 10.1016/j.jbiotec.2007.03.020 CrossRefGoogle Scholar
  27. Graziano MP, Broderick DJ, Tota MR (1998) Expression of G protein-coupled receptors in Drosophila Schneider 2 cells. In: Lynch KR (ed) Receptor biochemistry and methodology series, identification and expression of G protein-coupled receptors. Wiley, New York, pp 181–195Google Scholar
  28. Gutsche I, Coulibaly F, Voss JE, Salmon J, d’Alayer J, Ermonval M et al (2011) Secreted dengue virus nonstructural protein NS1 is an atypical barrel-shaped high-density lipoprotein. Proc Natl Acad Sci USA 108:8003–8008CrossRefGoogle Scholar
  29. Horwitz AH, Carroll SF, Williams RE, Liu P (2000) Inclusion of S-sepharose beads in the culture medium significantly improves recovery of secreted rBPI21 from transfected CHO-K1 cells. Protein Expr Purif 18:77–85. doi: 10.1006/prep.1999.1163 CrossRefGoogle Scholar
  30. Hwang J, Kim Y (2011) RNA interference of an antimicrobial peptide, Gloverin, of the beet armyworm, Spodoptera exigua, enhances susceptibility to Bacillus thuringiensis. J Invertebr Pathol 108:194–200. doi: 10.1016/j.jip.2011.09.003 CrossRefGoogle Scholar
  31. Jeon H-B, Park J-H, Lee H-H, Kim D-H, Lee H-Y, Shon D-H et al (2012) Enhancement of protein productivity of recombinant hepatitis A virus VP1 in stably transfected Drosophila melanogaster S2 cells. J Bacteriol Virol 42:69–75CrossRefGoogle Scholar
  32. Johansson DX, Drakenberg K, Hopmann KH, Schmidt A, Yari F, Hinkula J et al (2007) Efficient expression of recombinant human monoclonal antibodies in Drosophila S2 cells. J Immunol Methods 318:37–46CrossRefGoogle Scholar
  33. Junker BH, Reddy J, Gbewonyo K, Greasham R (1994) On-line and in situ monitoring technology for cell density measurement in microbial and animal cell cultures. Bioprocess Eng 10:195–207. doi: 10.1007/BF00369530 CrossRefGoogle Scholar
  34. Justice C, Brix A, Friemark D et al (2011) Process control in cell culture technology using dielectric spectroscopy. Biotechnol Adv 29:391–401. doi: 10.1016/j.biotechadv.2011.03.002 CrossRefGoogle Scholar
  35. Kawaoka S, Katsuma S, Daimon T et al (2008) Functional analysis of four Gloverin-like genes in the silkworm, Bombyx mori. Arch Insect Biochem Physiol 67:87–96. doi: 10.1002/arch.20223 CrossRefGoogle Scholar
  36. Kazmin D, Edwards RA, Turner RJ et al (2002) Visualization of proteins in acrylamide gels using ultraviolet illumination. Anal Biochem 301:91–96. doi: 10.1006/abio.2001.5488 CrossRefGoogle Scholar
  37. Kim KR, Kim YK, Cha HJ (2008) Recombinant baculovirus-based multiple protein expression platform for Drosophila S2 cell culture. J Biotechnol 133:116–122CrossRefGoogle Scholar
  38. Kollewe C (2013) Production of recombinant proteins in insect cells. Am J Biochem Biotechnol 9:255–271. doi: 10.3844/ajbbsp.2013.255.271 CrossRefGoogle Scholar
  39. Ladner CL, Yang J, Turner RJ, Edwards RA (2004) Visible fluorescent detection of proteins in polyacrylamide gels without staining. Anal Biochem 326:13–20. doi: 10.1016/j.ab.2003.10.047 CrossRefGoogle Scholar
  40. Lee JM, Jeon H-B, Sohn BH, Chung IS (2007) Functional expression of recombinant canstatin in stably transformed Drosophila melanogaster S2 cells. Protein Expr Purif 52:258–264. doi: 10.1016/j.pep.2006.11.016 CrossRefGoogle Scholar
  41. Lee JM, Lee HH, Hwang-Bo J, Shon DH, Kim W, Chung IS (2009) Expression and immunogenicity of recombinant polypeptide VP1 of human hepatitis A virus in stably transformed fruitfly (Drosophila melanogaster) Schneider 2 cells. Biotechnol Appl Biochem 53:101–109CrossRefGoogle Scholar
  42. Lee JM, Chung HY, Kim KI, Yoo KH, Hwang-Bo J, Chung IS et al (2011) Synthesis of double-layered rotavirus-like particles using internal ribosome entry site vector system in stably-transformed Drosophila melanogaster. Biotechnol Lett 33:41–46CrossRefGoogle Scholar
  43. Lehrer RI, Ganz T (1999) Antimicrobial peptides in mammalian and insect host defence. Curr Opin Immunol 11:23–27. doi: 10.1016/S0952-7915(99)80005-3 CrossRefGoogle Scholar
  44. Lemos MAN, dos Santos AS, Astray RM et al (2009) Rabies virus glycoprotein expression in Drosophila S2 cells. I: design of expression/selection vectors, subpopulations selection and influence of sodium butyrate and culture medium on protein expression. J Biotechnol 143:103–110. doi: 10.1016/j.jbiotec.2009.07.003 CrossRefGoogle Scholar
  45. Li RW, Li C (2006) Butyrate induces profound changes in gene expression related to multiple signal pathways in bovine kidney epithelial cells. BMC Genom 7:234. doi: 10.1186/1471-2164-7-234 CrossRefGoogle Scholar
  46. Li Y, Xiang Q, Zhang Q et al (2012a) Overview on the recent study of antimicrobial peptides: origins, functions, relative mechanisms and application. Peptides 37:207–215. doi: 10.1016/j.peptides.2012.07.001 CrossRefGoogle Scholar
  47. Li YZ, Counor D, Lu P et al (2012b) A specific and sensitive antigen capture assay for NS1 protein quantitation in Japanese encephalitis virus infection. J Virol Methods 179:8–16. doi: 10.1016/j.jviromet.2011.06.008 CrossRefGoogle Scholar
  48. Lieberman MM, Clements DE, Ogata S, Wang G, Corpuz G, Wong T et al (2007) Preparation and immunogenic properties of a recombinant West Nile subunit vaccine. Vaccine 25:414–423CrossRefGoogle Scholar
  49. Lim HJ, Cha HJ (2006) Observation and modeling of induction effect on human transferrin production from stably transfected Drosophila S2 cell culture. Enzyme Microb Technol 39:208–214. doi: 10.1016/j.enzmictec.2005.10.021 CrossRefGoogle Scholar
  50. Lundström A, Liu G, Kang D et al (2002) Trichoplusia ni Gloverin, an inducible immune gene encoding an antibacterial insect protein. Insect Biochem Mol Biol 32:795–801. doi: 10.1016/S0965-1748(01)00162-X CrossRefGoogle Scholar
  51. Mackintosh JA, Gooley AA, Karuso PH et al (1998) A Gloverin-like antibacterial protein is synthesized in Helicoverpa armigera following bacterial challenge. Dev Comp Immunol 22:387–399. doi: 10.1016/S0145-305X(98)00025-1 CrossRefGoogle Scholar
  52. Moraes ÂM, Jorge SAC, Astray RM et al (2012) Drosophila melanogaster S2 cells for expression of heterologous genes: from gene cloning to bioprocess development. Biotechnol Adv 30:613–628. doi: 10.1016/j.biotechadv.2011.10.009 CrossRefGoogle Scholar
  53. Moreno-Habel DA, Biglang-awa IM, Dulce A et al (2012) Inactivation of the budded virus of Autographa californica M nucleopolyhedrovirus by Gloverin. J Invertebr Pathol 110:92–101. doi: 10.1016/j.jip.2012.02.007 CrossRefGoogle Scholar
  54. Müller H, Salzig D, Czermak P (2015) Considerations for the process development of insect-derived antimicrobial peptide production. Biotechnol Prog 31:1–11. doi: 10.1002/btpr.2002 CrossRefGoogle Scholar
  55. Negrete A, Esteban G, Kotin RM (2007) Process optimization of large-scale production of recombinant adeno-associated vectors using dielectric spectroscopy. Appl Microbiol Biotechnol 76:761–772. doi: 10.1007/s00253-007-1030-9 CrossRefGoogle Scholar
  56. Nilsen SL, Castellino FJ (1999) Expression of human plasminogen in Drosophila schneider S2 cells. Protein Expr Purif 16:136–143CrossRefGoogle Scholar
  57. Parachin NS, Mulder KC, Viana AAB et al (2012) Expression systems for heterologous production of antimicrobial peptides. Peptides 38:446–456. doi: 10.1016/j.peptides.2012.09.020 CrossRefGoogle Scholar
  58. Park JH, Lee JM, Chung IS (1999) Production of recombinant endostatin from stably transformed Drosophila melanogaster S2 cells. Biotechnol Lett 21:729–733. doi: 10.1023/A:1005510821928 CrossRefGoogle Scholar
  59. Park JH, Kyung-Hwa C, Lee YH, Hae-Yeong K, Jai-Myung Y, In-Sik C (2002) Production of recombinant rotavirus capsid protein VP7 from stably transformed Drosophila melanogaster S2 cells. J Microbiol Biotechnol 12:563–568Google Scholar
  60. Park J-H, Hwang I-S, Kim K-I, Lee J-M, Park Y-M, Park C-H et al (2008) Functional expression of recombinant human ribonuclease/angiogenin inhibitor in stably transformed Drosophila melanogaster S2 cells. Cytotechnology 57:93–99. doi: 10.1007/s10616-008-9126-3 CrossRefGoogle Scholar
  61. Perret BG, Wagner R, Lecat S, Brillet K, Rabut G, Bucher B et al (2003) Expression of EGFP-amino-tagged human mu opioid receptor in Drosophila Schneider 2 cells: a potential expression system for large-scale production of G-protein coupled receptors. Protein Expr Purif 31:123–132CrossRefGoogle Scholar
  62. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  63. Santos MG, Jorge SAC, Brillet K, Pereira CA (2007) Improving heterologous protein expression in transfected Drosophila S2 cells as assessed by EGFP expression. Cytotechnology 54:15–24CrossRefGoogle Scholar
  64. Santos NGL, Rocca MP, Pereira CA et al (2016) Impact of recombinant Drosophila S2 cell population enrichment on expression of rabies virus glycoprotein. Cytotechnology 68:2605–2611. doi: 10.1007/s10616-016-9984-z CrossRefGoogle Scholar
  65. Schetz JA, Shankar EPN (2004) Protein expression in the Drosophila Schneider 2 cell system. In: Gerfen CR, Holmes A, Sibley D, Skolnick P, Wray S (eds) Current protocols in neuroscience. Wiley, New York, pp 4.16.1–4.16.15Google Scholar
  66. Schetz JA, Kim O-J, Sibley DR (2003) Pharmacological characterization of mammalian D1 and D2 dopamine receptors expressed in Drosophila schneider-2 cells. J Recept Signal Transduct Res 23:99–109CrossRefGoogle Scholar
  67. Schmidt FR (2004) Recombinant expression systems in the pharmaceutical industry. Appl Microbiol Biotechnol 65:363–372. doi: 10.1007/s00253-004-1656-9 CrossRefGoogle Scholar
  68. Schneider I (1972) Cell lines derived from late embryonic stages of Drosophila melanogaster. J Embryol Exp Morphol 27:353–365Google Scholar
  69. Scotter AJ, Kuntz DA, Saul M et al (2006) Expression and purification of sea raven type II antifreeze protein from Drosophila melanogaster S2 cells. Protein Expr Purif 47:374–383. doi: 10.1016/j.pep.2005.10.028 CrossRefGoogle Scholar
  70. Seitz V, Clermont A, Wedde M et al (2003) Identification of immunorelevant genes from greater wax moth (Galleria mellonella) by a subtractive hybridization approach. Dev Comp Immunol 27:207–215. doi: 10.1016/S0145-305X(02)00097-6 CrossRefGoogle Scholar
  71. Seok YJ, Kim KI, Yoo KH, Hwang-Bo J, Lee HH, Shon DH et al (2010) Expression and immunogenicity of a recombinant chimeric protein of human colorectal cancer antigen GA733-2 and an Fc antibody fragment in stably transformed Drosophila melanogaster S2 cells. Appl Biochem Biotechnol 162:1435–1445CrossRefGoogle Scholar
  72. Shin HS, Cha HJ (2002) Facile and statistical optimization of transfection conditions for secretion of foreign proteins from insect Drosophila S2 Cells using green fluorescent protein reporter. Biotechnol Prog 18:1187–1194CrossRefGoogle Scholar
  73. Shin HS, Cha HJ (2003) Statistical optimization for immobilized metal affinity purification of secreted human erythropoietin from Drosophila S2 cells. Protein Expr Purif 28:331–339CrossRefGoogle Scholar
  74. Shin HS, Lim HJ, Cha HJ (2003) Quantitative monitoring for secreted production of human Interleukin-2 in stable insect Drosophila S2 cells using a green fluorescent protein fusion partner. Biotechnol Prog 19:152–157CrossRefGoogle Scholar
  75. Silva JLC, Barbosa JF, Bravo JP et al (2010) Induction of a Gloverin-like antimicrobial polypeptide in the sugarcane borer Diatraea saccharalis challenged by septic injury. Braz J Med Biol Res 43:431–436. doi: 10.1590/S0100-879X2010005000010 CrossRefGoogle Scholar
  76. Smith SM (2011) Strategies for the purification of membrane proteins. Methods Mol Biol 681:485–496. doi: 10.1007/978-1-60761-913-0_29 CrossRefGoogle Scholar
  77. Søndergaard L (1996) Drosophila cells can be grown to high cell densities in a bioreactor. Biotechnol Tech 10:161–166. doi: 10.1007/BF00158939 CrossRefGoogle Scholar
  78. Swiech K, Rossi N, Astray RM, Suazo CAT (2008) Enhanced production of recombinant rabies virus glycoprotein (rRVGP) by Drosophila melanogaster S2 cells through control of culture conditions. Cytotechnology 57:67–72. doi: 10.1007/s10616-008-9134-3 CrossRefGoogle Scholar
  79. Uribe E, Venkatesan M, Rose DR, Ewart KV (2013) Expression of recombinant Atlantic salmon serum C-type lectin in Drosophila melanogaster Schneider 2 cells. Cytotechnology 65:513–521. doi: 10.1007/s10616-012-9505-7 CrossRefGoogle Scholar
  80. Valle MA, Kester MB, Burns AL, Marx SJ, Spiegel AM, Shiloach J (2001) Production and purification of human menin from Drosophila melanogaster S2 cells using stirred tank reactor. Cytotechnology 35:127–135CrossRefGoogle Scholar
  81. van Die IM, Zuidweg EM, Bergmans JE, Hoekstra WP (1984) Transformability of galE variants derived from uropathogenic Escherichia coli strains. J Bacteriol 158:760–761Google Scholar
  82. Vatandoost J, Bos MHA (2016) Efficient expression of functional human coagulation factor IX in stably-transfected Drosophila melanogaster S2 cells; comparison with the mammalian CHO system. Biotechnol Lett 38:1691–1698. doi: 10.1007/s10529-016-2156-6 CrossRefGoogle Scholar
  83. Vogel H, Altincicek B, Glöckner G, Vilcinskas A (2011) A comprehensive transcriptome and immune-gene repertoire of the lepidopteran model host Galleria mellonella. BMC Genom 12:308. doi: 10.1186/1471-2164-12-308 CrossRefGoogle Scholar
  84. Wang L, Hu H, Yang J, Wang F, Kaisermayer C, Zhou P (2012) High yield of human monoclonal antibody produced by stably transfected Drosophila Schneider 2 cells in perfusion culture using wave bioreactor. Mol Biotechnol 52:170–179. doi: 10.1007/s12033-011-9484-5 CrossRefGoogle Scholar
  85. Wang G, Li X, Wang Z (2016) APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 44:D1087–D1093. doi: 10.1093/nar/gkv1278 CrossRefGoogle Scholar
  86. Wickham T, Nemerow G, Wood HAZ, Shuler ML (1995) Comparison of different cell lines for the production of recombinant baculovirus proteins. In: Richardson C (ed) Baculovirus expression protocols. Humana Press, New York, pp 385–395CrossRefGoogle Scholar
  87. Xia X, Yu L, Xue M et al (2015) Genome-wide characterization and expression profiling of immune genes in the diamondback moth, Plutella xylostella (L.). Sci Rep 5:9877. doi: 10.1038/srep09877 CrossRefGoogle Scholar
  88. Xu X-X, Zhong X, Yi H-Y, Yu X-Q (2012) Manduca sexta Gloverin binds microbial components and is active against bacteria and fungi. Dev Comp Immunol 38:275–284. doi: 10.1016/j.dci.2012.06.012 CrossRefGoogle Scholar
  89. Xu XX, Jin FL, Wang YS, Freed S, Hu QB, Ren SX (2015) Molecular cloning and characterization of Gloverin from the diamondback moth, Plutella xylostella L. and its interaction with bacterial membrane. World J Microbiol Biotechnol 31:1529–1541. doi: 10.1007/s11274-015-1901-7 CrossRefGoogle Scholar
  90. Yang L, Song Y, Li X et al (2012) HIV-1 virus-like particles produced by stably transfected Drosophila S2 cells: a desirable vaccine component. J Virol 86:7662–7676. doi: 10.1128/JVI.07164-11 CrossRefGoogle Scholar
  91. Yi H-Y, Deng X-J, Yang W-Y et al (2013) Gloverins of the silkworm Bombyx mori: structural and binding properties and activities. Insect Biochem Mol Biol 43:612–625. doi: 10.1016/j.ibmb.2013.03.013 CrossRefGoogle Scholar
  92. Yoshida H, Yoshizawa T, Shibasaki F et al (2002) Chemical chaperones reduce aggregate formation and cell death caused by the truncated Machado-Joseph disease gene product with an expanded polyglutamine stretch. Neurobiol Dis 10:88–99CrossRefGoogle Scholar
  93. Zhao YM, Chen X, Sun H et al (2006) Effects of histone deacetylase inhibitors on transcriptional regulation of the hsp70 gene in Drosophila. Cell Res 16:566–576. doi: 10.1038/ CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Institute of Bioprocess Engineering and Pharmaceutical TechnologyUniversity of Applied Sciences MittelhessenGiessenGermany
  2. 2.Department of Chemical EngineeringKansas State UniversityManhattanUSA
  3. 3.Faculty of Biology and ChemistryJustus-Liebig University of GiessenGiessenGermany
  4. 4.Project Group BioresourcesFraunhofer Institute for Molecular Biology and Applied Ecology (IME)GiessenGermany

Personalised recommendations