, Volume 68, Issue 6, pp 2711–2720 | Cite as

Isolation and characterization of 5S rDNA sequences in catfishes genome (Heptapteridae and Pseudopimelodidae): perspectives for rDNA studies in fish by C0t method

  • Juceli Gonzalez Gouveia
  • Ivan Rodrigo Wolf
  • Vivian Patrícia Oliveira de Moraes-Manécolo
  • Vanessa Belline Bardella
  • Lara Munique Ferracin
  • Lucia Giuliano-Caetano
  • Renata da Rosa
  • Ana Lúcia DiasEmail author
Original Article


Sequences of 5S ribosomal RNA (rRNA) are extensively used in fish cytogenomic studies, once they have a flexible organization at the chromosomal level, showing inter- and intra-specific variation in number and position in karyotypes. Sequences from the genome of Imparfinis schubarti (Heptapteridae) were isolated, aiming to understand the organization of 5S rDNA families in the fish genome. The isolation of 5S rDNA from the genome of I. schubarti was carried out by reassociation kinetics (C0t) and PCR amplification. The obtained sequences were cloned for the construction of a micro-library. The obtained clones were sequenced and hybridized in I. schubarti and Microglanis cottoides (Pseudopimelodidae) for chromosome mapping. An analysis of the sequence alignments with other fish groups was accomplished. Both methods were effective when using 5S rDNA for hybridization in I. schubarti genome. However, the C0t method enabled the use of a complete 5S rRNA gene, which was also successful in the hybridization of M. cottoides. Nevertheless, this gene was obtained only partially by PCR. The hybridization results and sequence analyses showed that intact 5S regions are more appropriate for the probe operation, due to conserved structure and motifs. This study contributes to a better understanding of the organization of multigene families in catfish’s genomes.


C0Genomics micro-library Hybridization Pisces 



The authors are grateful to Dr. André Luis LaforgaVanzela and Dra. Maria Helena Pelegrinelli Fungaro for support to cloning in this study. This research was supported by a grant from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). This search received permission from Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA) to collect fish specimens.

Supplementary material

10616_2016_9996_MOESM1_ESM.pdf (96 kb)
Supplementary material S1 PCR amplification of 5S rDNA of Imparfinis schubarti genome in 1 % agarose gel (PDF 95 kb)
10616_2016_9996_MOESM2_ESM.pdf (46 kb)
Supplementary material S2 Results of CENSOR software shows in sequences with incomplete 5S, similar to the SINE3-1 element (PDF 46 kb)
10616_2016_9996_MOESM3_ESM.pdf (106 kb)
Supplementary material S3 Prediction of the secondary structure of the 5S rRNA obtained by the C0t method. The color scale indicates the likelihood of the pairings (PDF 106 kb)


  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefGoogle Scholar
  2. Alves-Costa FA, Wasko AP, Oliveira C, Foresti F, Martins C (2006) Genomic organization and evolution of the 5S ribosomal DNA in Tilapiini fishes. Genetica 127:243–252CrossRefGoogle Scholar
  3. Ardura A, Pola IG, Linde AR, Garcia-Vazquez E (2010) DNA-based methods for species authentication of Amazonian commercial fish. Food Res Int 43:2295–2302CrossRefGoogle Scholar
  4. Barbosa P, Oliveira LA, Pucci MB, Santos MH, Moreira-Filho O, Vicari MR, Nogaroto V, Almeida MC, Artoni RF (2015) Identification and chromosome mapping of repetitive elements in the Astyanax scabripinnis (Teleostei: Characidae) species complex. Genetica 143:55–62CrossRefGoogle Scholar
  5. Bertollo LAC, Takahashi CS, Moreira-Filho O (1978) Cytotaxonomic considerations on Hopliaslacerdae (Pisces, Erythrinidae). Bras J Genet 1:103–120Google Scholar
  6. Burge SW, Daub J, Eberhardt R, Tate J, Barquist L, Nawrocki EP, Eddy SR, Gardner PP, Bateman A (2013) Rfam 11.0: 10 years of RNA families. Nucleic Acids Res 41:226–232CrossRefGoogle Scholar
  7. Cohen S, Segal D (2009) Extra chromosomal circular DNA in eukaryotes: possible involvement in the plasticity of tandem repeats. Cytogenet Genome Res 124:327–338CrossRefGoogle Scholar
  8. Eickbush TH, Eickbush DG (2007) Finely orchestrated movements: evolution of the ribosomal RNA genes. Genetics 175:477–485CrossRefGoogle Scholar
  9. Ferreira IA, Martins C (2008) Physical chromosome mapping of repetitive DNA sequences in Nile tilapia Oreochromisniloticus: evidences for a differential distribution of repetitive elements in the sex chromosomes. Micron 39:411–428CrossRefGoogle Scholar
  10. Ferreira M, Kavalco KF, Almeida-Toledo LF, Garcia C (2014) Cryptic diversity between two Imparfinis species (Siluriformes, Heptapteridae) by cytogenetic analysis and DNA barcodin. Zebrafish 11:4CrossRefGoogle Scholar
  11. Garcia CO, Almeida-Toledo LF (2010a) Karyotypic evolution trends in Rhamdiaquelen (Siluriformes, Heptapteridae) with considerations about the origin and differentiation of its supernumerary chromosomes. Genet Mol Res 9:365–384CrossRefGoogle Scholar
  12. Garcia CO, Almeida-Toledo LF (2010b) Comparative chromosomal analyses in species of the genus Pimelodella (Siluriformes, Heptapteridae): occurrence of structural and numerical polymorphisms. Caryologia 63:32–40CrossRefGoogle Scholar
  13. Gouveia JG, Moraes VPO, Sampaio TR, Rosa R, Dias AL (2013) Considerations on karyotype evolution in the genera Imparfinis Eigenmann and Norris 1900 and Pimelodella Eigenmann and Eigenmann 1888 (Siluriformes: Heptapteridae). Rev Fish Biol Fish 23:215–227CrossRefGoogle Scholar
  14. Gouveia JG, Moraes VPO, Pires LB, Rosa R, Dias AL (2015) Comparative cytogenetics between two species of the family Pseudopimelodidae (Siluriformes): occurrence of natural triploidy and supernumerary chromosomes. Cytotechnology 67:215–522CrossRefGoogle Scholar
  15. Gruber AR, Lorenz R, Bernhart SH, Neuböck R, Hofacker IL (2008) The Vienna RNA websuite. Nucleic Acids Res 36:70–74CrossRefGoogle Scholar
  16. Huang X (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877CrossRefGoogle Scholar
  17. Kantek DLZ, Peres WAM, Buckup PA, Moreira-Filho O (2009) Cytogenetics of Imparfinisschubarti (Siluriformes: Heptapteridae) from the Piumhi drainage, a diverted river in Minas Gerais State, Brazil. Zoologia 26:733–738CrossRefGoogle Scholar
  18. Kapitonov VV, Jurka J (2003) A novel class of SINE elements derived from 5S rDNA. Mol Biol Evol 20:694–702CrossRefGoogle Scholar
  19. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066CrossRefGoogle Scholar
  20. Kohany O, Gentles AJ, Hankus L, Jurka J (2006) Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor. BMC Bioinform 7:474CrossRefGoogle Scholar
  21. Long EO, David ID (1980) Repeated genes in eukaryotes. Ann Rev Biochem 49:727–764CrossRefGoogle Scholar
  22. Mantovani M, Abel LDS, Moreira-Filho O (2005) Conserved 5S and variable 45S rDNA chromosomal localisation revealed by FISH in Astyanax scabripinnis (Pisces, Characidae). Genetica 123:211–216CrossRefGoogle Scholar
  23. Marques MBA, Moreira-Filho O, Garcia C, Margarido VP (2008) Cytogenetic analyses of two endemic fish species from the São Francisco river basin: Conorhynchus conirostris and Lophiosilurus alexandri (Siluriformes). Genet Mol Biol 31:215–221CrossRefGoogle Scholar
  24. Martinez JF, Lui RL, Blanco DR, Traldi JB, Silva LF, Venere PC, Souza IL, Moreira-Filho O (2011) Comparative cytogenetics of three populations from the Rhamdia quelen species complex (Siluriformes, Heptapteridae) in two Brazilian hydrographic basins. Caryologia 64:121–128CrossRefGoogle Scholar
  25. Martins C, Galetti PM Jr (1999) Chromosomal localization of 5S rDNA genes in Leporinus fish (Anostomidae, Characiformes). Chromosome Res 7:363–367CrossRefGoogle Scholar
  26. Martins C, Galetti PM Jr (2001) Organization of 5S rDNA in species of the fish Leporinus: two different genomic locations are characterized by distinct nontranscribed spacers. Genome 44:903–910CrossRefGoogle Scholar
  27. Martins C, Wasko AP (2004) Organization and evolution of 5S ribosomal DNA in the fish genome. In: Williams CR (ed) Focus on genome research. Nova Science Publishers, pp 335–363Google Scholar
  28. Merlo MA, Cross I, Manchado M, Cárdenas S, Rebordinos L (2013) The 5S rDNA high dynamism in Diplodussargus is a transposon-mediatedmechanism. Comparison with other multigene families and Sparidae species. J Mol Evol 76:83–97CrossRefGoogle Scholar
  29. Nakajima RT, Cabral-de-Mello DC, Valente GT, Venere PC, Martins C (2012) Evolutionary dynamics of rRNA gene clusters in cichlid fish. BMC Evol Biol 12:198CrossRefGoogle Scholar
  30. Nawrocki EP, Eddy SR (2013) Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29:2933–2935CrossRefGoogle Scholar
  31. Okonechnikov K, Golosova O, Fursov M (2012) Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28:1166–1167CrossRefGoogle Scholar
  32. Pinkel D, Straume T, Gray JW (1986) Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci USA 83:2934–2938CrossRefGoogle Scholar
  33. Raskina O, Belyayev A, Nevo E (2004) Quantum speciation in Aegilops: molecular cytogenetic evidence from rDNA cluster variability in natural populations. Proc Natl Acad Sci USA 101:14818–14823CrossRefGoogle Scholar
  34. Rebordinos L, Cross I, Merlo A (2013) High evolutionary dynamism in 5S rDNA of fish: state of the Art. Cytogenet Genome Res 141:103–113CrossRefGoogle Scholar
  35. Rodrigues D, Rivera M, Lourenço L (2012) Molecular organization and chromosomal localization of 5S rDNA in Amazonian Engystomops (Anura, Leiuperidae). BMC Genet 13:1–17CrossRefGoogle Scholar
  36. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  37. Sczepanski TS, Vicari MR, Almeida MC, Nogaroto V, Artoni RF (2013) Chromosomal organization of repetitive DNA in Sorubim lima (Teleostei; Pimelodidae). Cytogenet Genome Res 141:309–316CrossRefGoogle Scholar
  38. Tarailo-Graovac M, Chen N (2009) Using RepeatMasker to identify repetitive elements in genomic sequences. Curr Protoc Bioinform 4:10–14. doi: 10.1002/0471250953.bi0410s25 Google Scholar
  39. Úbeda-Manzanaro M, Merlo MA, Palazón JL, Sarasquete C, Rebordinos L (2010) Sequence characterization and phylogenetic analysis of the 5S ribosomal DNA in species of the family Batrachoididae. Genome 53:723–730CrossRefGoogle Scholar
  40. Vicari MR, Nogaroto V, Noleto RB, Cestari MM, Cioffi MB, Almeida MC, Moreira-Filho O, Bertollo LAC, Artoni RF (2010) Satellite DNA and chromosomes in Neotropical fishes: methods, applications and perspectives. J Fish Biol 76:1094–1116CrossRefGoogle Scholar
  41. Vierna J, Jensen KT, Martinez-Lage A, Gonzalez-Tizon AM (2012) The linked units of 5S rDNA and U1 snDNA of razor shells (Mollusca: Bivalvia: Pharidae). Heredity 107:127–142CrossRefGoogle Scholar
  42. Wang Y, Stumph WE (1995) RNA Polymerase II/III transcription specificity determined by TATA box orientation. Proc Natl Acad Sci USA 19:8606–8610CrossRefGoogle Scholar
  43. Zwick MS, Hanson RE, Islam-Faridi MN, Stelly DM et al (1997) Arapid procedure for the isolation of C0t–1 DNA from plants. Genome 40:138–142CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Juceli Gonzalez Gouveia
    • 1
  • Ivan Rodrigo Wolf
    • 1
  • Vivian Patrícia Oliveira de Moraes-Manécolo
    • 1
  • Vanessa Belline Bardella
    • 1
  • Lara Munique Ferracin
    • 1
  • Lucia Giuliano-Caetano
    • 1
  • Renata da Rosa
    • 1
  • Ana Lúcia Dias
    • 1
    Email author
  1. 1.Departamento de Biologia Geral, Centro de Ciências Biológicas, CCBUniversidade Estadual de LondrinaLondrinaBrazil

Personalised recommendations