Cytotechnology

, Volume 68, Issue 4, pp 579–592 | Cite as

Systematic review of factors influencing extracellular vesicle yield from cell cultures

  • Johann Mar Gudbergsson
  • Kasper Bendix Johnsen
  • Martin Najbjerg Skov
  • Meg Duroux
Review

Abstract

The potential therapeutic utility of extracellular vesicles (EVs) has spawned an interest into a scalable production, where the quantity and purity of EV samples is sufficient for clinical applications. EVs can be isolated using several different protocols; however, these isolation protocols and the subsequent methods of quantifying the resulting EV yield have not been sufficiently standardized. Therefore, the possibility of comparing different studies with respect to these parameters is limited. In this review, we have presented factors that might influence the yield and function of EVs from cell culture supernatants. The methods of isolation, downstream quantification, and culture conditions of the EV producing cells have been discussed. In order to examine the inter-study coherency of EV yields, 259 studies were initially screened, and 46 studies were included for extensive downstream analysis of EV yields where information pertaining to the isolation protocols and quantification methods was obtained from each study. Several other factors influencing yield were compared, such as cell type producing EVs, cell confluence level, and cell stimulation. In conclusion, various factors may impact the resulting EV yield, including technical aspects such as EV isolation and quantification procedures, and biological aspects such as cell type and culture conditions. The reflections presented in this review might aid in future standardization of the workflow in EV research.

Keywords

EV Exosome Microvesicle Isolation Quantification Stimulation 

Abbreviations

EV

Extracellular vesicle

MVB

Multivesicular body

UC

Ultracentrifugation

SEC

Size-exclusion chromatography

UC-W

Ultracentrifugation with washing step

UC-G

Ultracentrifugation with gradient separation

FCS

Fetal calf serum

CM

Conditioned medium

BCA

Bicinchoninic acid

NTA

Nanoparticle tracking analysis

FA

Fixed angle

SW

Swinging bucket

DLS

Dynamic light scattering

TRPS

Tunable resistive pulse sensing

References

  1. Akers JC, Gonda D, Kim R et al (2013) Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol 113:1–11. doi:10.1007/s11060-013-1084-8 CrossRefGoogle Scholar
  2. Alvarez-Erviti L, Seow Y, Yin H et al (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29:341–345. doi:10.1038/nbt.1807 CrossRefGoogle Scholar
  3. Balaj L, Lessard R, Dai L et al (2011) Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun 2:180. doi:10.1038/ncomms1180 CrossRefGoogle Scholar
  4. Böing AN, van der Pol E, Grootemaat AE et al (2014) Single-step isolation of extracellular vesicles by size-exclusion chromatography. J Extracell Vesicles. doi:10.3402/jev.v3.23430 Google Scholar
  5. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3 CrossRefGoogle Scholar
  6. Brownlee Z, Lynn KD, Thorpe PE, Schroit AJ (2014) A novel “salting-out” procedure for the isolation of tumor-derived exosomes. J Immunol Methods 407:120–126. doi:10.1016/j.jim.2014.04.003 CrossRefGoogle Scholar
  7. Bryan N, Andrews KD, Loughran MJ et al (2011) Elucidating the contribution of the elemental composition of fetal calf serum to antigenic expression of primary human umbilical-vein endothelial cells in vitro. Biosci Rep 31:199–210. doi:10.1042/BSR20100064 CrossRefGoogle Scholar
  8. Chen TS, Arslan F, Yin Y et al (2011) Enabling a robust scalable manufacturing process for therapeutic exosomes through oncogenic immortalization of human ESC-derived MSCs. J Transl Med 9:47. doi:10.1186/1479-5876-9-47 CrossRefGoogle Scholar
  9. Colombo M, Raposo G, Théry C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289. doi:10.1146/annurev-cellbio-101512-122326 CrossRefGoogle Scholar
  10. Coumans FAW, van der Pol E, Böing AN et al (2014) Reproducible extracellular vesicle size and concentration determination with tunable resistive pulse sensing. J Extracell Vesicles 3:25922CrossRefGoogle Scholar
  11. Cvjetkovic A, Lötvall J, Lässer C (2014) The influence of rotor type and centrifugation time on the yield and purity of extracellular vesicles. J Extracell Vesicles. doi:10.3402/jev.v3.23111 Google Scholar
  12. De Jong OG, Verhaar MC, Chen Y et al (2012) Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. J Extracell Vesicles. doi:10.3402/jev.v1i0.18396 Google Scholar
  13. Dong W-W, Mou Q, Chen J et al (2012) Differential expression of Rab27A/B correlates with clinical outcome in hepatocellular carcinoma. World J Gastroenterol 18:1806. doi:10.3748/wjg.v18.i15.1806 CrossRefGoogle Scholar
  14. Eitan E, Zhang S, Witwer KW, Mattson MP (2015) Extracellular vesicle-depleted fetal bovine and human sera have reduced capacity to support cell growth. J Extracell Vesicles 4:26373CrossRefGoogle Scholar
  15. Epple LM, Griffiths SG, Dechkovskaia AM et al (2012) Medulloblastoma exosome proteomics yield functional roles for extracellular vesicles. PLoS ONE 7:e42064. doi:10.1371/journal.pone.0042064 CrossRefGoogle Scholar
  16. Filipe V, Hawe A, Jiskoot W (2010) Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm Res 27:796–810. doi:10.1007/s11095-010-0073-2 CrossRefGoogle Scholar
  17. Fountoulakis M, Juranville JF, Manneberg M (1992) Comparison of the Coomassie brilliant blue, bicinchoninic acid and Lowry quantitation assays, using non-glycosylated and glycosylated proteins. J Biochem Biophys Methods 24:265–274. doi:10.1016/0165-022X(94)90078-7 CrossRefGoogle Scholar
  18. Franquesa M, Hoogduijn MJ, Ripoll E et al (2014) Update on controls for isolation and quantification methodology of extracellular vesicles derived from adipose tissue mesenchymal stem cells. Front Immunol 5:525. doi:10.3389/fimmu.2014.00525 CrossRefGoogle Scholar
  19. Frisken BJ (2001) Revisiting the method of cumulants for the analysis of dynamic light-scattering data. Appl Opt 40:4087–4091CrossRefGoogle Scholar
  20. Gal D, MacDonald PC, Porter JC et al (1981) Effect of cell density and confluency on cholesterol metabolism in cancer cells in monolayer culture. Cancer Res 41:473–477Google Scholar
  21. Gardiner C, Ferreira YJ, Dragovic RA et al (2013) Extracellular vesicle sizing and enumeration by nanoparticle tracking analysis. J Extracell Vesicles 2:1–11. doi:10.3402/jev.v2i0.19671 CrossRefGoogle Scholar
  22. Gardiner C, Shaw M, Hole P et al (2014) Measurement of refractive index by nanoparticle tracking analysis reveals heterogeneity in extracellular vesicles. J Extracell Vesicles 3:25361CrossRefGoogle Scholar
  23. Gould SJ, Raposo G (2013) As we wait: coping with an imperfect nomenclature for extracellular vesicles. J Extracell Vesicles 2:3–5. doi:10.3402/jev.v2i0.20389 CrossRefGoogle Scholar
  24. György B, Módos K, Pállinger É et al (2011) Detection and isolation of cell-derived microparticles are compromised by protein complexes resulting from shared biophysical parameters. Blood 117:39–48. doi:10.1182/blood-2010-09-307595 CrossRefGoogle Scholar
  25. Hassan PA, Rana S, Verma G (2015) Making sense of Brownian motion: colloid characterization by dynamic light scattering. Langmuir 31:3–12. doi:10.1021/la501789z CrossRefGoogle Scholar
  26. Hayes O, Ramos B, Rodríguez LL et al (2005) Cell confluency is as efficient as serum starvation for inducing arrest in the G0/G1 phase of the cell cycle in granulosa and fibroblast cells of cattle. Anim Reprod Sci 87:181–192. doi:10.1016/j.anireprosci.2004.11.011 CrossRefGoogle Scholar
  27. Heinemann ML, Ilmer M, Silva LP et al (2014) Benchtop isolation and characterization of functional exosomes by sequential filtration. J Chromatogr A 1371C:125–135. doi:10.1016/j.chroma.2014.10.026 CrossRefGoogle Scholar
  28. Hoshino D, Kirkbride KC, Costello K et al (2013) Exosome secretion is enhanced by invadopodia and drives invasive behavior. Cell Rep 5:1159–1168. doi:10.1016/j.celrep.2013.10.050 CrossRefGoogle Scholar
  29. Hosseini HM, Fooladi AAI, Nourani MR, Ghanezadeh F (2013) The role of exosomes in infectious diseases. Inflamm Allergy Drug Targets 12:29–37. doi:10.2174/1871528111312010005 CrossRefGoogle Scholar
  30. Inder KL, Ruelcke JE, Petelin L et al (2014) Cavin-1/PTRF alters prostate cancer cell-derived extracellular vesicle content and internalization to attenuate extracellular vesicle-mediated osteoclastogenesis and osteoblast proliferation. J Extracell Vesicles. doi:10.3402/jev.v3.23784 Google Scholar
  31. Ji H, Greening DW, Barnes TW et al (2013) Proteome profiling of exosomes derived from human primary and metastatic colorectal cancer cells reveal differential expression of key metastatic factors and signal transduction components. Proteomics 13:1672–1686. doi:10.1002/pmic.201200562 CrossRefGoogle Scholar
  32. Johnsen KB, Gudbergsson JM, Skov MN et al (2014) A comprehensive overview of exosomes as drug delivery vehicles - Endogenous nanocarriers for targeted cancer therapy. Biochim Biophys Acta 1846:75–87. doi:10.1016/j.bbcan.2014.04.005 Google Scholar
  33. Karow AR, Götzl J, Garidel P (2014) Resolving power of dynamic light scattering for protein and polystyrene nanoparticles. Pharm Dev Technol 7450:1–6. doi:10.3109/10837450.2014.910808 Google Scholar
  34. Kessler RJ, Fanestil DD (1986) Interference by lipids in the determination of protein using bicinchoninic acid. Anal Biochem 159:138–142. doi:10.1016/0003-2697(86)90318-0 CrossRefGoogle Scholar
  35. King HW, Michael MZ, Gleadle JM (2012) Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer 12:421. doi:10.1186/1471-2407-12-421 CrossRefGoogle Scholar
  36. Kirazov LP, Venkov LG, Kirazov EP (1993) Comparison of the Lowry and the Bradford protein assays as applied for protein estimation of membrane-containing fractions. Anal Biochem 208:44–48CrossRefGoogle Scholar
  37. Klein-Scory S, Tehrani MM, Eilert-Micus C et al (2014) New insights in the composition of extracellular vesicles from pancreatic cancer cells: implications for biomarkers and functions. Proteome Sci 12:50. doi:10.1186/s12953-014-0050-5 CrossRefGoogle Scholar
  38. Koumangoye RB, Sakwe AM, Goodwin JS et al (2011) Detachment of breast tumor cells induces rapid secretion of exosomes which subsequently mediate cellular adhesion and spreading. PLoS ONE 6:e24234. doi:10.1371/journal.pone.0024234 CrossRefGoogle Scholar
  39. Kowal J, Tkach M, Théry C (2014) Biogenesis and secretion of exosomes. Curr Opin Cell Biol 29:116–125. doi:10.1016/j.ceb.2014.05.004 CrossRefGoogle Scholar
  40. Kucharzewska P, Christianson HC, Welch JE et al (2013) Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development. Proc Natl Acad Sci USA 110:7312–7317. doi:10.1073/pnas.1220998110 CrossRefGoogle Scholar
  41. Lee HD, Kim YH, Kim D-S (2014) Exosomes derived from human macrophages suppress endothelial cell migration by controlling integrin trafficking. Eur J Immunol 44:1156–1169. doi:10.1002/eji.201343660 CrossRefGoogle Scholar
  42. Li J, Lee Y, Johansson HJ et al (2015) Serum-free culture alters the quantity and protein composition of neuroblastoma-derived extracellular vesicles. J Extracell Vesicles 4:26883. doi:10.3402/jev.v4.26883 CrossRefGoogle Scholar
  43. Llorente A, Skotland T, Sylvänne T et al (2013) Molecular lipidomics of exosomes released by PC-3 prostate cancer cells. Biochim Biophys Acta Mol Cell Biol Lipids 1831:1302–1309. doi:10.1016/j.bbalip.2013.04.011 CrossRefGoogle Scholar
  44. Lötvall J, Hill AF, Hochberg F et al (2014) Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles 3:26913. doi:10.3402/jev.v3.26913 CrossRefGoogle Scholar
  45. Lund P, Pilgaard L, Duroux M et al (2009) Effect of growth media and serum replacements on the proliferation and differentiation of adipose-derived stem cells. Cytotherapy 11:189–197. doi:10.1080/14653240902736266 CrossRefGoogle Scholar
  46. Maas SL, de Vrij J, Broekman ML (2014) Quantification and size-profiling of extracellular vesicles using tunable resistive pulse sensing. J Vis Exp 92:e51623. doi:10.3791/51623 Google Scholar
  47. Maas SLN, de Vrij J, van der Vlist EJ et al (2015) Possibilities and limitations of current technologies for quantification of biological extracellular vesicles and synthetic mimics. J Control Release 200:87–96. doi:10.1016/j.jconrel.2014.12.041 CrossRefGoogle Scholar
  48. McMeekin TL, Groves ML, Hipp NJ (1964) Refractive indices of amino acids, proteins, and related substances. In: Stekol JA (ed) Amino acids and serum proteins. American Chemical Society, Washington, pp 54–66CrossRefGoogle Scholar
  49. Mills GL, Lane PA, Weech PK (2000) A guidebook to lipoprotein techniques. Elsevier, AmsterdamGoogle Scholar
  50. Momen-Heravi F, Balaj L, Alian S et al (2013) Current methods for the isolation of extracellular vesicles. Biol Chem 394:1253–1262. doi:10.1515/hsz-2013-0141 CrossRefGoogle Scholar
  51. Nordin JZ, Lee Y, Vader P et al (2015) Ultrafiltration with size-exclusion liquid chromatography for high yield isolation of extracellular vesicles preserving intact biophysical and functional properties. Nanomed Nanotechnol Biol Med 11:1–5. doi:10.1016/j.nano.2015.01.003 CrossRefGoogle Scholar
  52. Osteikoetxea X, Balogh A, Szabó-Taylor K et al (2015) Improved characterization of EV preparations based on protein to lipid ratio and lipid properties. PLoS ONE 10:e0121184. doi:10.1371/journal.pone.0121184 CrossRefGoogle Scholar
  53. Pirkmajer S, Chibalin AV (2011) Serum starvation: caveat emptor. Am J Physiol Cell Physiol. doi:10.1152/ajpcell.00091.2011 Google Scholar
  54. Properzi F, Logozzi M, Fais S (2013) Exosomes: the future of biomarkers in medicine. Biomark Med 7:769–778. doi:10.2217/bmm.13.63 CrossRefGoogle Scholar
  55. Record M, Carayon K, Poirot M, Silvente-Poirot S (2014) Exosomes as new vesicular lipid transporters involved in cell–cell communication and various pathophysiologies. Biochim Biophys Acta Mol Cell Biol Lipids 1841:108–120. doi:10.1016/j.bbalip.2013.10.004 CrossRefGoogle Scholar
  56. Rossi O, Maggiore L, Necchi F et al (2014) Comparison of colorimetric assays with quantitative amino acid analysis for protein quantification of generalized modules for membrane antigens (GMMA). Mol Biotechnol 57:84–93. doi:10.1007/s12033-014-9804-7 CrossRefGoogle Scholar
  57. Sapan CV, Lundblad RL, Price NC (1999) Colorimetric protein assay techniques. Biotechnol Appl Biochem 29:99–108. doi:10.1111/j.1470-8744.1999.tb00538.x Google Scholar
  58. Savina A, Furlán M, Vidal M, Colombo MI (2003) Exosome release is regulated by a calcium-dependent mechanism in K562 cells. J Biol Chem 278:20083–20090. doi:10.1074/jbc.M301642200 CrossRefGoogle Scholar
  59. Schageman J, Zeringer E, Li M et al (2013) The complete exosome workflow solution: from isolation to characterization of RNA cargo. Biomed Res Int 2013:253957. doi:10.1155/2013/253957 CrossRefGoogle Scholar
  60. Sharma P, Schiapparelli L, Cline HT (2013) Exosomes function in cell–cell communication during brain circuit development. Curr Opin Neurobiol 23:997–1004. doi:10.1016/j.conb.2013.08.005 CrossRefGoogle Scholar
  61. Shelke GV, Lässer C, Gho YS, Lötvall J (2014) Importance of exosome depletion protocols to eliminate functional and RNA-containing extracellular vesicles from fetal bovine serum. J Extracell Vesicles. doi:10.3402/jev.v3.24783 Google Scholar
  62. Skog J, Würdinger T, van Rijn S et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476. doi:10.1038/ncb1800 CrossRefGoogle Scholar
  63. Smith PK, Krohn RI, Hermanson GT et al (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85CrossRefGoogle Scholar
  64. Sokolova V, Ludwig A-K, Hornung S et al (2011) Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy. Colloids Surf B Biointerfaces 87:146–150. doi:10.1016/j.colsurfb.2011.05.013 CrossRefGoogle Scholar
  65. Steinman RA, Wentzel A, Lu Y et al (2003) Activation of Stat3 by cell confluence reveals negative regulation of Stat3 by cdk2. Oncogene 22:3608–3615. doi:10.1038/sj.onc.1206523 CrossRefGoogle Scholar
  66. Svensson KJ, Kucharzewska P, Christianson HC et al (2011) Hypoxia triggers a proangiogenic pathway involving cancer cell microvesicles and PAR-2-mediated heparin-binding EGF signaling in endothelial cells. Proc Natl Acad Sci USA 108:13147–13152. doi:10.1073/pnas.1104261108 CrossRefGoogle Scholar
  67. Tauro BJ, Greening DW, Mathias RA et al (2012) Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods 56:293–304. doi:10.1016/j.ymeth.2012.01.002 CrossRefGoogle Scholar
  68. Tauro BJ, Mathias RA, Greening DW et al (2013) Oncogenic H-ras reprograms Madin-Darby canine kidney (MDCK) cell-derived exosomal proteins following epithelial-mesenchymal transition. Mol Cell Proteomics 12:2148–2159. doi:10.1074/mcp.M112.027086 CrossRefGoogle Scholar
  69. Taylor DD, Shah S (2015) Methods of isolating extracellular vesicles impact down-stream analyses of their cargoes. Methods. doi:10.1016/j.ymeth.2015.02.019 Google Scholar
  70. Théry C, Regnault A, Garin J et al (1999) Molecular characterization of dendritic cell-derived exosomes: selective accumulation of the heat shock protein hsc73. J Cell Biol 147:599–610. doi:10.1083/jcb.147.3.599 CrossRefGoogle Scholar
  71. Théry C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol Chapter 3: Unit 3.22. doi:10.1002/0471143030.cb0322s30
  72. Tian Y, Li S, Song J et al (2014) A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 35:2383–2390. doi:10.1016/j.biomaterials.2013.11.083 CrossRefGoogle Scholar
  73. Valadi H, Ekström K, Bossios A et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659. doi:10.1038/ncb1596 CrossRefGoogle Scholar
  74. Van der Pol E, Coumans FA, Grootemaat AE et al (2014a) Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J Thromb Haemost 12:1182–1192. doi:10.1111/jth.12602 CrossRefGoogle Scholar
  75. Van der Pol E, Coumans FA, Sturk A et al (2014b) Refractive index determination of nanoparticles in suspension using nanoparticle tracking analysis. Nano Lett 14:6195–6201. doi:10.1021/nl503371p CrossRefGoogle Scholar
  76. Van Deun J, Mestdagh P, Sormunen R et al (2014) The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling. J Extracell Vesicles 1:1–14. doi:10.3402/jev.v3.24858 Google Scholar
  77. Vlassov AV, Magdaleno S, Setterquist R, Conrad R (2012) Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta Gen Subj 1820:940–948. doi:10.1016/j.bbagen.2012.03.017 CrossRefGoogle Scholar
  78. Wang J-S, Wang F-B, Zhang Q-G et al (2008) Enhanced expression of Rab27A gene by breast cancer cells promoting invasiveness and the metastasis potential by secretion of insulin-like growth factor-II. Mol Cancer Res 6:372–382. doi:10.1158/1541-7786.MCR-07-0162 CrossRefGoogle Scholar
  79. Wang Q, Ni Q, Wang X et al (2014) High expression of RAB27A and TP53 in pancreatic cancer predicts poor survival. Med Oncol 32:372. doi:10.1007/s12032-014-0372-2 CrossRefGoogle Scholar
  80. Weatherall E, Willmott GR (2015) Applications of tunable resistive pulse sensing. Analyst 140:3318–3334. doi:10.1039/c4an02270j CrossRefGoogle Scholar
  81. Webber J, Clayton A (2013) How pure are your vesicles? J Extracell Vesicles 2:1–6. doi:10.3402/jev.v2i0.19861 CrossRefGoogle Scholar
  82. Wiechelman KJ, Braun RD, Fitzpatrick JD (1988) Investigation of the bicinchoninic acid protein assay: identification of the groups responsible for color formation. Anal Biochem 175:231–237. doi:10.1016/0003-2697(88)90383-1 CrossRefGoogle Scholar
  83. Willmott GR, Vogel R, Yu SSC et al (2010) Use of tunable nanopore blockade rates to investigate colloidal dispersions. J Phys: Condens Matter 22:454116. doi:10.1088/0953-8984/22/45/454116 Google Scholar
  84. Witwer KW, Buzás EI, Bemis LT et al (2013) Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles. doi:10.3402/jev.v2i0.20360 Google Scholar
  85. Wu X, Hu A, Zhang M, Chen Z (2013) Effects of Rab27a on proliferation, invasion, and anti-apoptosis in human glioma cell. Tumor Biol 34:2195–2203. doi:10.1007/s13277-013-0756-5 CrossRefGoogle Scholar
  86. Xie Y, Bai O, Zhang H et al (2010) Membrane-bound HSP70-engineered myeloma cell-derived exosomes stimulate more efficient CD8(+) CTL- and NK-mediated antitumour immunity than exosomes released from heat-shocked tumour cells expressing cytoplasmic HSP70. J Cell Mol Med 14:2655–2666. doi:10.1111/j.1582-4934.2009.00851.x CrossRefGoogle Scholar
  87. Yeo RWY, Lai RC, Zhang B et al (2013) Mesenchymal stem cell: an efficient mass producer of exosomes for drug delivery. Adv Drug Deliv Rev 65:336–341. doi:10.1016/j.addr.2012.07.001 CrossRefGoogle Scholar
  88. Zheng Y, Campbell EC, Lucocq J et al (2013) Monitoring the Rab27 associated exosome pathway using nanoparticle tracking analysis. Exp Cell Res 319:1706–1713. doi:10.1016/j.yexcr.2012.10.006 CrossRefGoogle Scholar
  89. Zhu L, Qu X-H, Sun Y-L et al (2014) Novel method for extracting exosomes of hepatocellular carcinoma cells. World J Gastroenterol 20:6651–6657. doi:10.3748/wjg.v20.i21.6651 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Johann Mar Gudbergsson
    • 1
  • Kasper Bendix Johnsen
    • 2
  • Martin Najbjerg Skov
    • 1
  • Meg Duroux
    • 1
  1. 1.Laboratory of Cancer Biology, Institute of Health Science and TechnologyAalborg UniversityAalborg ØDenmark
  2. 2.Laboratory of Neurobiology, Institute of Health Science and TechnologyAalborg UniversityAalborg ØDenmark

Personalised recommendations